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ABSTRACT 

 
The correct segmentation of blood vessels in optical 

coherence tomography (OCT) images is an important 
requirement for better diagnosis of many retinal diseases. 
Although OCT blood vessel segmentation is often 
performed by applying vessel detection methods on 2D 
projection of OCT datasets, some papers investigate the 
vessel segmentation on OCT slices. The presence of 
shadows in outer retinal layers is established as the main 
factor for vessel localization; however, the shadow 
information fails to localize many important blood vessels. 
The proposed method is based on anatomical changes of 
Retinal Nerve Fiber Layer (RNFL) in presence of vessels. In 
this paper we find the thickening of RNFL by applying a 
layer segmentation algorithm on OCT slices and combine 
this information with shadow localization. Furthermore, a 
vessel detection method based on curvelet transform is also 
applied on 2D projection of OCTs to be added to localized 
vessels from OCTs. The results show that combination of 
vessel detection on 2D projection with vessel localization on 
OCTs can improve the accuracy up to 0.96 which is 
promisingly higher than older methods. 
 
Index Terms— Vessel segmentation, OCT image, Retinal 
Nerve Fiber Layer 
 

1. INTRODUCTION 
 
Optical coherence tomography (OCT) is a powerful imaging 
modality used to produce information about internal 
structure of biological tissues [1]. OCT uses the principle of 
low coherence interferometry to generate two or three 
dimensional imaging with high cross-sectional resolution of 
1-15mm. Since light is 150,000 times faster than sound, in 
contrast to ultrasound it is not possible to measure the 
optical echoes directly. Therefore OCT performs based on 
transporting the information of the investigated specimen 
and inferring this information with a reference light beam 
which has traveled a known path length [2]. The underlying 

technology makes the method a non-invasive imaging 
modality for observation of the human eye’s retinal layers. 
No other imaging technology is able to present the (layers of 
the) eye at the same resolution without tissue dissection. 
Fine retinal vascular networks are also detectable using 
OCT. However, analysis of fine capillary vessels is difficult, 
due to noise and ambiguous appearance in the data.  
Initial vessel detection filters were proposed in 1998 in [3] 
and [4]. A vesselness value for each point of the volume is 
computed by using the eigenvalues and eigenvectors of the 
Hessian matrix. Another method for detection of centerline 
was proposed in [5], and an overview of vessel extraction 
methods is given in [6]. However, all of these methods show 
unsatisfactory results in noisy data (like OCT) since too 
many points are misclassified as vessel points while being 
part of the background. 
 The eigenvalue decomposition of the Hessian matrix was 
also used for developing vessel enhancing filters like those 
proposed in [7] and [8]. An enhancement of cerebral vessels 
in CT scans by level sets is also proposed in [8]. However, 
the mentioned method is reported to be efficient for vessel 
thicknesses 100 and 350 times thicker than the retinal 
capillary vessels.  Many researchers like [9-12] are working 
on the detection and segmentation of the vascular network in 
two dimensional fundus images of the eye background and 
[13] works on 2D projections of OCT images.  

In this paper we find the thickening of Retinal Nerve 
Fiber Layer (RNFL) by applying a layer segmentation 
algorithm on OCT slices and combining this information 
with shadow localization. Furthermore, a vessel detection 
method based on curvelet transform is also applied on 2D 
projection of OCTs to be added to localized vessels from 
OCTs.  

 
2. COMBINATION OF TWO METHODS FOR OCT 

VESSEL SEGMENTATION 
 
Since the retinal bloods absorb the wavelengths of light 

used in SD-OCT, the volume beneath each vessel becomes 
less visible and consequently a shadow appears in the 
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position of vessels as an indicator for localizing the 
corresponding x-axis position. On the other hand, it should 
be noted that the presence of vessels have also a thickening 
effect on RNFL, which is a discriminative point in vessel 
localization [14]. To the best of our knowledge, RNFL 
thickening hasn’t ever been used in automatic segmentation 
of vessels in other researches. In this paper, we utilize both 
of the mentioned indicators to localize the position of the 
vessels in each OCT scan and an overall map of the vessel 
position can be obtained by putting the obtained locations 
along together. In order to include both of the indicators in 
automatic programming, we first apply retinal layer 
segmentation [15] on each OCT slice. Then, the vertical 
mean brightness of pixels located between 6th and 12th 
boundaries of OCT is calculated (the outer retinal layers), in 
which local minimums indicating the vessel shadows are 
searched. We also compute the similar value for pixels 
placed between 2nd and 6th boundaries, presence of a local 
maximum brightness in which is a sign of RNFL thickening.  

Since the overall brightness of an OCT scan is not identical 
in the whole scan (making a drift line), it is not possible to 
set a constant threshold on each of the mentioned profiles. 
Therefore, a moving average filter can be first applied on 
each profile to estimate the drift line to be eliminated, and a 
constant threshold equal to two-times of the standard 
deviation is selected for trimming. Figure 1(b, c) present a 
complete overview of the proposed vessel detection 
algorithm on OCT slices. In older methods of vessel 
localization on OCT scans, the total profile of each column 
was used to identify the shadow positions (Figure 1(a)), 
instead of reducing the search area to pixels located between 
retinal layers. Furthermore, a very complicated filtering 
technique was proposed to find the location of shadows 
using the total profile [16], which is simply replaced by 
elimination of drift line and a constant threshold in this 
proposed method. Furthermore, the vessel localization on 
OCT scans of such older methods was never employed to 
produce a vessel map on X-Y coordinates. 

 
Figure 1. (a) Mean of total profile for each column and applying a moving average to eliminate the drift line, (b) Boundary detection on 
the selected OCT scan to produce the mean intensity profiles of the layers located between 2nd to 6th boundary, and the ones located 

between the 6th to 12th boundary, (c) Mean of partial profiles for each column and applying a moving average to eliminate the drift lines. 

 
Figure 2. (a) The mean image obtained by taking the mean value of vertical axis pixels (reference image to point out the accuracy of the 
proposed vessel segmentation algorithm on OCT scans), (b) Correspondence between the shadows, RNFL thickening and blood vessels. 

The red vertical lines show the correct accordance between the RNFL thickening and some blood vessels.  The blue vertical lines show the 
correct accordance between the shadows and some blood vessels, (c) Detection of vessels using the RNFL thickening search which cannot 
be localized by finding the shadows (red point is a vessel determined by RNFL thickening which cannot be detected by shadow method). 
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Figure 2 shows the correspondence between the shadows, 
RNFL thickening and blood vessels. The red point in Figure 
2 (a) shows a vessel determined by RNFL thickening which 
cannot be detected by shadow method. 
It should be mentioned that the most popular method for 
production of a 2D map of vessels on OCT scans is based on 
applying traditional methods of fundus vessel segmentation 
on the mean image obtained by taking the mean value of 
vertical axis [13] (shown in Figure 2 (a) and 3 (a)). We 
employed fundus vessel segmentation based on curvelet 
transform [17] to localize the vessels with acceptable 
precision. Similar to what we may see in most of similar 
methods, we should perform a length filtering in final step of 

the algorithm to remove short and incorrect structure. 
Furthermore, as proposed by [13], we may take advantage of 
shadow presence in outer retinal layers and produce the 
mean image by taking the mean value of pixels in vertical 
axis located between boundaries 6 to 12 (Figure 3(b)). This 
map is more reliable in vessel detection since the macular 
darkness is removed and the vessels have more contrast. 
Finally, the thick vessels can be localized ideally with this 
method and we proposed to mix the results of “vessel 
segmentation on the mean image” with “vessel localization 
on each OCT scan” to identify the thinner vessels along with 
the thicker ones obtained from mean image projection.  

Figure 3. Visual comparison of performance for vessel segmentation of OCT images (in colored figures the blue lines indicate the joint 
information of two combinatory methods, and two other colors (turquoise and pink) point out the information from each method). (a) The 

mean image obtained by taking the mean value of vertical axis pixels,(b) The mean image obtained by taking the mean value of vertical 
axis pixels ones located between the 6th to 12th boundary (reference image to point out the accuracy of the proposed vessel segmentation 

algorithm on OCT scans), (c) Manual segmentation, (d) Method 3 (Curvelet based vessel segmentation on (a)), (e) Method 4 (Curvelet 
based vessel segmentation on (b)), (f) Method 1, (g) Method 2, (h) Method 5 (Combination of Method 1 and Method 4), (i) Method 6 

(Combination of Method 2 and Method 4). 
 

3. RESULTS 
 

An automatic vessel segmentation system for spectral 3D 
OCT scans has been presented. The results show that the 
vessel segmentation works well and that the selected method 
is proper for vessel detection on OCT images. The above 
algorithm for vessel segmentation was tested on twenty 
macula centered spectral 3D OCT scans of 20 normal 
subjects acquired using a Zeiss Meditec Cirrus OCT 

scanner. Each volume has 200 × 200 × 1024 voxels 
corresponding to 6 × 6 × 2 mm3. The result of segmentation 
of blood vessel in MATLAB using our algorithm is shown 
in Figure 3. In order to compare our results with recently 
proposed methods, we implemented methods demonstrated 
in Table 1. Visual and numerical comparisons of 
performance of methods in Table 1 for vessel segmentation 
are also shown in Table 2 and Figure 3.  
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Table 1.  Description of the proposed methods for comparison.
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

Table 2. Comparison of performance measures for vessel segmentation of OCT images 
 TPR FPR Accuracy 

Method 3 0.9512 0.7592 0.9192 

Methode4 0.9484 0.9750 0.9496 

Methode1 0.9494 0.8738 0.9408 

Methode2 0.9575 0.8145 0.9403 

Methode5 0.9615 0.8689 0.9549 

Methode6 0.9636 0.8118 0.9620 

 
 

4. RELATION TO PRIOR WORK 
 

To the best of our knowledge, this is the first work 
for OCT vessel segmentation using the information of 
RNFL thickening in combination with shadow 
localization for vessel positioning. The recent work of 
Lu [16] for OCT layer segmentation included vessel 
segmentation on OCT slices with only utilizing the 
shadow information, the priority of this proposed 
method on which is fully discussed above. Many 
other methods like [13, 18] were only based on retinal 
vessel detection on 2D projection of OCT data, which 
is explored in the previous paragraphs in more detail. 
Another recent work [19] employed active shape 
model to segment blood vessel contours in axial 
direction; but the mentioned paper is mostly focused 
on localization of vessels on OCRs rather than 
making a vessel map from retina.  

 In this work we combine the information from 
OCT slices with vessel detection of 2D projection to 
surpass the mentioned older works.     

In conclusion, the new method seems to have 
important advantage over older methods which makes 
the accuracy of the method higher than other vessel 
segmentation approaches. The performance of the 
method is fast and the implementation is relatively 

simple in comparison to more complicated 
algorithms.  

 
5. CONCLUSION 

 
The proposed method is based on anatomical 

changes of Retinal Nerve Fiber Layer (RNFL) in 
presence of vessels. In this paper we find the 
thickening of RNFL by applying a layer segmentation 
algorithm on OCT slices and combine this 
information with shadow localization. Furthermore, a 
vessel detection method based on curvelet transform 
is also applied on 2D projection of OCTs to be added 
to localized vessels from OCTs.  

The results show that combination of vessel 
detection on 2D projection with vessel localization on 
OCTs can improve the accuracy up to 0.96 which is 
promisingly higher than older methods. 

In future studies we will show how would the 
algorithm fare if the curvelet part would be replaced 
with one of the other existing 2D vessel segmentation 
algorithms. 
 

6. ACKNOWLEDGMENT 
 

This work was supported in part by the National 
Institutes of Health grants R01 EY018853, R01 
EY019112, and R01 EB004640 

 The algorithm Figures 
Method1 Find mean of the total profile for each column and apply a moving average to 

eliminate the drift line. Then find the minimums less than a predefined threshold.  
Figure 1(a, b)  
and Figure 3(f) 

Method2 Find mean of partial profiles of the layers located between 2nd to 6th boundary, 
and the ones located between the 6th to 12th boundary and applying a moving 
average to eliminate the drift lines. Then find the minimums less than a predefined 
threshold in pixels located between the 6th to 12th boundary and find the 
maximums higher than a predefined threshold in pixels located between the 2nd to 
6th boundary.  

Figure 1(b, c)  
and Figure 3(g) 

Method3 Vessel segmentation on the mean image obtained by taking the mean value of 
vertical axis 

Figure 3(a, d) 

Method4 Vessel segmentation on the mean image by taking the mean value of pixels in 
vertical axis located between boundaries 6 to 12 

Figure 3(b, e) 

Method5 Combination of Method 1 and Method 4 Figure 3(h) 
Method6 Combination of Method 2 and Method 4 Figure 3(i) 
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