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ABSTRACT

We propose and evaluate a simple yet effective technique of
combining nonadaptive and adaptive beamforming methods
aimed to achieve high quality of ultrasound images at low
computational cost. Our hybrid beamformer automatically
switches between nonadaptive and adaptive beamforming of
input data vectors, based on the outcome of the comparison of
the input coherence factor against a certain threshold. For il-
lustrative purposes, we used the delay-and-sum (DAS) beam-
former as an example of a nonadaptive method, while the
Generalized Sidelobe Canceller (GSC) and Adaptive Single
Snapshot Beamformer (ASSB) served as two examples of an
adaptive method. We have applied our technique to simu-
lated ultrasound images of a 12-point phantom and a point-
scattering-cyst phantom, demonstrating substantial computa-
tional savings without a significant degradation in the image
resolution and contrast, in comparison to the standard GSC-
based or ASSB-based beamforming methods.

Index Terms— Array signal processing, ultrasonic imag-
ing, image quality

1. INTRODUCTION

Beamforming techniques generally can be classified into
two categories: data-independent (nonadaptive) and data-
dependent (adaptive) [1]. The weights of the former are
fixed and commonly realized by means of standard window
functions (e.g., rectangular, Hamming, Kaiser) determining a
balance between the mainlobe width and the sidelobe level,
which translates into a balance between the image resolution
and contrast [2]. On the other hand, the adaptive beamformer
weights depend on the statistics of the input data and can
achieve a narrow mainlobe width as well as suppress the
sidelobe level, thus improving both the image resolution and
contrast. However, such improvements in the image quality
come at a high computational cost.

The objective of this work is to reduce the computational
load due to adaptive beamforming of ultrasound transducer
data, while retaining a high quality of resulting images. Our
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simple yet effective approach is based on switching between
a nonadaptive beamformer and an adaptive one based on the
scalar value of the coherence factor (CF) that quantifies the
relationship between coherent and incoherent components of
the input data vector. Our evaluation results (Section IV) are
based on the simulated 4-MHz ultrasound images of two dis-
tinct types: a 12-point phantom acquired by a 98-element
phased array, and a point-scatterer-cyst phantom acquired by
a 192-element linear array with 66 active elements. These
simulations were performed using the FIELD-II tool [3].

In our simulation studies, for each input data vector, we
calculate the corresponding CF value and compare it to a
certain threshold, denoted by TCF . If the CF value is below
TCF , we use a nonadaptive DAS (delay-and-sum) beam-
former; otherwise, we use the standard GSC (Generalized
Sidelobe Canceller) that implements an adaptive MVDR
(minimum-variance distortionless response) beamformer [1].
Additionally, we have also evaluated an alternative combi-
nation using the DAS beamformer and the ASSB (Adaptive
Single Snapshot Beamformer) [4]. In both cases, our hybrid
scheme turns out to be highly effective despite its simplicity,
yielding significant computational savings (between 59% and
99%) without significant degradation in the image resolution
and contrast (less than 5%).

2. CONVENTIONAL AND PROPOSED
BEAMFORMING METHODS

For a conventional M -element beamforming structure shown
in Figure 1, at the sampling instance t, the beamformer output
y(t) and output power P (t) are given by [1]:

y(t) = wH(t)x(t), P (t) = wH(t)R(t)w(t), (1)

where w(t) is the weight vector, and R(t) = E[x(t)xH (t)]
is the spatial covariance matrix. We assume that appropriate
delay focusing [∆1(t), ∆2(t), ..., ∆M (t)] is applied at every
t, which yields a real-valued phase-compensated input vec-
tor x(t) with the steering vector d = 1 (i.e., a vector of M
1’s). The weight vector of the nonadaptive DAS beamformer
is simply w = 1/M . On the other hand, the optimal weights
of the MVDR beamformer are such that P (t) is minimized,
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Fig. 1. Conventional ultrasound beamformer.

subject to w(t)Hd = 1. That is [1]:

wopt(t) =
R−1(t)d

dHR−1(t)−1d
. (2)

The spatial covariance matrix R(t) is typically unknown and
estimated based on the sample correlation matrix R̂(t) =
1

N

∑t

n=t−N+1
x(n)xH(n), where N is the number of snap-

shots, which is typically very small as ultrasound signals are
non-stationary. To decorrelate desired and interfering signals,
we also apply the standard spatial smoothing scheme [5]. Let-
ting xk(t) = [xk(t) xk+1(t) ... xk+L−1(t)]

T denote the k-th
subarray within x(t), we have the spatially smoothed sample
correlation matrix R̃(t) given by [5]:

R̃(t) =
1

(M − L + 1)N

t∑

n=t−N+1

M−L+1∑

k=1

xk(n)xH
k (n).

(3)
Note that the size of R̃(t) is L × L, whereas the original size
of R(t) is M × M . Consequently, replacing R(t) with R̃(t)
in Equation (2) will produce a weight vector w̃(t) of size L
(rather than M ):

w̃(t) =
R̃(t)−1d

dHR̃(t)−1d
. (4)

The beamformer output is now computed as follows [6]:

y(t) =
w̃H(t)

M − L + 1

M−L+1∑

k=1

xk(t). (5)

One can further enhance the the beamformer output by mul-
tiplying it by the coherence factor defined as [7]:

CF(t) =
|dHx(t)|2

M
∑M

i=1
|xi(t)|2

=
|
∑M

i=1
xi(t)|

2

M
∑M

i=1
|xi(t)|2

. (6)

The CF can be interpreted as the ratio of the on-axis power to
the total received power and ranges between 0 and 1. Using
the scaled output CF(t)y(t) has been shown to improve the
beamformer performance [7, 8, 9, 10, 11].

Conventional GSC. The MVDR beamformer can be im-
plemented using the GSC structure (see Figure 2), whose out-
put is [1]:

y(t) = [wq − Bwa(t)]Hx(t), (7)
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Fig. 2. Conventional GSC (top) and ASSB (bottom).

where B is the blocking matrix, and wq and wa(t) are the
quiescent and adaptive weight vectors, respectively. Due to
delay focusing (i.e., d is a vector of M 1’s), wq and B are
fixed, while wa(t) varies adaptively. Taking into account spa-
tial smoothing, the optimal weights and the output of the GSC
are given by:

w̃a(t) = 2H̃(t)−1B̃HR̃(t)w̃q, (8)

y(t) =
[w̃q − B̃w̃a(t)]H

M − L + 1

M−L+1∑

k=1

xk(t), (9)

where H̃(t) = 2B̃HR̃(t)B̃. Note that B̃, w̃q, and w̃a(t) cor-
respond to the original counterparts B, wq, and wa(t), whose
dimensions have been reduced due to spatial smoothing.

Conventional ASSB. The ASSB represents a different
approach to the rejection of nonstationary and coherent inter-
ferers [4]. One possible ASSB structure (used in this work)
is shown in Figure 2, where the input vector x(t) is divided
into overlapping L-element subvectors xk(t). As in the case
of spatial smoothing, we let the number of such subvectors be
S = M − L + 1, where L = M/2. The ASSB output is [4]:

y(t) = uH(t)X(t)v(t), (10)

where each row k in the S × L data matrix X(t) is xT
k (t).

The data matrix X(t) can be interpreted as the superposi-
tion of a desired signal s1(t) and (K − 1) interfering sig-
nals s2(t), s3(t), ..., sK(t) impinging on the array, i.e., X =∑K

i=1
aig

T
i si(t), where K ≤ L [4]. For each signal si ar-

riving at an angle θi, we have the corresponding S-element
array characteristic vector ai and L-element group character-
istic vector gi. Applying appropriate delay focusing (based
on θ1 of the desired signal s1) yields a1 = 1 (i.e., a vector of
S 1’s) and g1 = 1 (i.e., a vector of L 1’s).
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It has been shown in [4] that the beamforming problem in
the presence of noise can be formulated as

min
v,y

‖e‖2
2 , subject to

[
gT

1 0
X(t) −a1

] [
v(t)
y(t)

]
=

[
1
e

]
. (11)

Using Lagrange multipliers, we obtain the following solution:

c =
(AHA)−1b

bH(AHA)−1b
, (12)

where A =
[
X(t) −a1

]
, b =

[
g1

0

]
, and c =

[
v(t)
y(t)

]
. Note

that the last element of c is the desired beamformer output.
Adaptive/Nonadaptive Hybrid Method. The nonadap-

tive DAS beamformer has a low computational cost, but
yields images of low quality. On the other hand, the GSC
and ASSB yield high image quality, but have a high compu-
tational cost (mainly due to matrix inversions). We propose
a straightforward low-cost high-quality beamforming scheme
that automatically switches between the nonadaptive DAS-
based and adaptive GSC-based or ASSB-based methods.
Such a switching decision relies on the coherence factor:
very low CF values indicate that the most of the received en-
ergy is in the sidelobes, and the image quality not likely to be
improved significantly by using an adaptive beamformer as
opposed to nonadaptive one. This simple idea is summarized
below:

1. Given input vector x(t), compute CF(t).

2. If CF(t) ≥ TCF , then use the GSC (or the ASSB) to calculate
output y(t), else use the DAS beamformer to calculate y(t).

3. Let y(t)← CF(t)y(t).

Let Ca and Cn denote, respectively, the computational costs
of adaptive and nonadaptive beamforming per input vector,
i.e., the cost of the GSC (or the ASSB) and the DAS beam-
former in our case. Also, let V denote the total number of
input vectors x(t) processed to form an image, and let Va

denote the number of input vectors satisfying the condition
CF(t) ≥ TCF and processed adaptively. Then, in compar-
ison to a conventional always-adaptive beamformer, our hy-
brid scheme achieves the beamforming computational savings
per image given by:

Savings/Image =

(
1 −

Va

V

) (
1 −

Ca

Cn

)
× 100%. (13)

The amount of such savings varies depending on the three fac-
tors: (1) the beamformer’s computational complexity quanti-
fied by Ca and Cn, (2) the input data, determining V and
affecting Va via the CF(t) value, and (3) the switching thresh-
old, affecting Va via the TCF value.

3. EVALUATION RESULTS

In this section, we evaluate the performance of the hybrid
DAS/GSC and DAS/ASSB beamformers in comparison to

their conventional counterparts. Our evaluations are based on
the simulated 4-MHz ultrasound images of a 12-point phan-
tom acquired by a phased array (M = 98 and N = 1),
and a point-scatterer-cyst phantom acquired by a linear ar-
ray (M = 66 and N = 2). The simulations were performed
using the FIELD-II tool [3] with four different threshold set-
tings: TCF = 0.01, 0.05, 0.10, 0.15.

Figure 3 shows the simulated images of the 12-point phan-
tom.1 To assess the image quality at focus, we rely on the
FWHM (full width at half maximum) as an indication of the
resolution quality and the sidelobe energy ESL (calculated
for attenuation level larger than 25 dB) as an indication of the
contrast quality. They are given in Table 1, where lower val-
ues are indicative of better-quality imaging. For the hybrid
DAS/GSC beamformer, one can see that using TCF = 0.05
yields the image of comparable quality (FWHM = 0.3512 mm
and ESL = −36.52 dB) with respect to the conventional GSC
(FWHM = 0.3511 mm and ESL = −37.15 dB). Note that us-
ing TCF = 0.10 or 0.15 significantly degrades ESL; on the
other hand, using TCF = 0.01 practically matches the per-
formance of the conventional GSC. However, the computa-
tional savings achieved with TCF = 0.01 are approximately
57%, as opposed to the savings of approximately 95% due
to TCF = 0.05. Thus, based on Table 1, we conclude that
TCF = 0.05 is an effective threshold for the hybrid DAS/GSC
beamformer. Similarly, comparing the conventional ASSB
and the hybrid DAS/ASSB beamformer (see Table 1), we con-
clude that TCF = 0.15 is an effective threshold for the latter.
It yields the image of comparable quality (FWHM = 0.3550
mm and ESL = −29.93 dB) with respect to the conventional
ASSB (FWHM = 0.3533 mm and ESL = −31.38 dB), while
achieving the computational savings of approximately 99%.

Figure 4 shows the simulated images of the point-cyst-
scatterer (PSC) phantom.2 The contrast values for the scat-
tering region are given in Table 1, where one can see that
TCF = 0.05 and TCF = 0.15 remain effective threshold set-
tings for the hybrid DAS/GSC and DAS/ASSB beamformers,
respectively. While maintaining a comparable image qual-
ity with their respective conventional counterparts, the hybrid
DAS/GSC and DAS/ASSB beamformers achieve computa-
tional savings of approximately 59% and 73%, respectively.

Concluding Remarks. One can notice that the hybrid
DAS/GSC with TCF = 0.05 outperforms the conventional
ASSB. However, the hybrid DAS/ASSB with TCF = 0.15
is better than the hybrid DAS/GSC with TCF = 0.15 when
imaging the 12-point phantom beyond the 60-mm focusing

1The 12-point phantom consists of 12 single point targets placed at the
10-mm intervals starting at 30 mm from the transducer surface. During trans-
mission, the focus is fixed at 60 mm, and during reception, dynamic receive
focusing is performed at 10-mm intervals.

2The PSC phantom is placed at 60 mm (transmit focus) and consists of
a point target, a highly scattering region with the radius of 1.5 mm, and a
water-filled cyst region with the radius of 2 mm. The lateral distances are -14
mm, -5 mm, and 10 mm, respectively. During reception, dynamic receive
focusing is performed at 10-mm intervals.
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Table 1. Quantitative image quality indicators.
12-Point PSC

Beamforming Method FWHM ESL Contrast
(mm) (dB) (Scatterer)

DAS 0.6723 -28.32 2.069
Conventional GSC 0.3511 -37.15 3.438

Conventional ASSB 0.3533 -31.38 3.228

DAS/GSC: TCF = 0.01 0.3512 -37.15 3.430
DAS/GSC: TCF = 0.05 0.3512 -36.52 3.370
DAS/GSC: TCF = 0.10 0.3533 -31.21 3.180
DAS/GSC: TCF = 0.15 0.3537 -30.99 2.981

DAS/ASSB: TCF = 0.01 0.3533 -31.36 3.214
DAS/ASSB: TCF = 0.05 0.3533 -31.28 3.132
DAS/ASSB: TCF = 0.10 0.3551 -31.42 3.127
DAS/ASSB: TCF = 0.15 0.3550 -29.93 3.126

point (see Figure 3). As for the PSC phantom images (see
Figure 4, the hybrid DAS/GSC with TCF = 0.15 also yields
a slightly lower contrast in the scattering region (due to an
increased mean signal in the background speckle) in compar-
ison to the hybrid DAS/ASSB with TCF = 0.15. Conse-
quently, one possible recommendation is that an ultrasound
system employ GSC-based beamforming as a starting point,
but switch to the hybrid DAS/ASSB when the higher values
of TCF are chosen. If only a single beamformer is to be used,
our evaluation results suggest that the hybrid DAS/GSC with
TCF = 0.05 is a clear winner in terms of an effective tradeoff
between the image quality and computational savings.

4. RELATION TO PRIOR WORK

There is an extensive literature on adaptive beamforming
applied to ultrasound imaging, e.g., see [12, 6, 13, 14, 15,
16, 17, 18, 7], most popular choices being the minimum-
variance and beamspace beamformers. This paper is the first
to provide a relatively detailed evaluation of the ASSB [4]
on the simulated ultrasound data, aside from a very brief
and somewhat cursory treatment in [19]. To the best of our
knowledge, this paper is also the first to explore a CF-based
switching scheme between nonadaptive and adaptive beam-
forming as a means to reduce the system’s computational
load. Several other methods reported in the literature, e.g. see
[20, 21, 22], have aimed at reducing the minimum-variance
beamforming complexity via various approximations. Our
switching scheme complements rather than competes with
those methods: any of the latter can be employed whenever
the coherence factor value is detected to exceed TCF . As
the next step, this work may be extended in several impor-
tant directions, such as adaptive threshold control, hybrid
broadband beamforming, and hybrid beamforming based on
compressed sensing [23, 24, 25].
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with TCF = 0.05, DAS/GSC with TCF = 0.15, ASSB,
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