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ABSTRACT 
 
The traditional Nyquist sampling architecture does not 
provide a feasible solution in a large multi-channel 
ultrasound imaging system. The main issues are the huge 
data volume after the analog-to-digital interface, high power 
consumption, and circuit complexity at both the front-end 
and mid-end.  This paper presents a Compressed Digital 
Beamformer (CDB) framework for the design of an 
ultrasound imaging system with a large transducer array ( ≥ 
1024) operating at a moderate carrier frequency ( ≥ 5 MHz).  
Simulations demonstrate that the proposed CDB framework 
achieves a Compression Ratio (CR) of 0.1 and Mean Square 
Error (MSE) of -27.7 dB with 4 quantization bits. 
 

Index Terms—Compressed Sensing, Asynchronous 
Sampling, Part-Time Randomization, Total Variation, 
Ultrasound Beamforming. 
 

1. INTRODUCTION 
 

In contrast to other medical imaging methods such as 
cameras, x-rays, and tomography, ultrasound imaging has 
several advantages including wide view angle, it is non-
invasive, and does not use radiation. The growing use of 
ultrasound for clinical imaging has motivated the develop-
ment of portable low cost ultrasound systems without sig-
nificantly compromising the imaging performance. A state-
of-the-art portable ultrasound system integrates a transducer 
array, a front-end circuit and a signal processing chip, that is 
typically power supplied by a battery [1] – [3]. The non-
intrusive form factor enables daily usage in an open 
environment. However, portable ultrasound imaging 
systems suffer from low resolution and high power consum-
ption. According to the imaging theorem, the central carrier 
frequency determines both the lateral and axial resolution, 
and the number of transducer elements limits the maximum 
angular resolution [4]. State-of-the-art portable ultrasound 
systems typically operate at 2 ~ 4 MHz with less than 32 
active transducer elements. The high carrier frequency 
requires the analog-to-digital converter (ADC) to operate at 
a high sampling rate to avoid aliasing. When the number of 
transducer elements is large, the entire data volume at the 

analog-to-digital interface imposes stringent requirements 
not only in the circuit power consumption but also the data 
transmission rate. Moreover, a large transducer array 
requires dense analog front-end circuitry working in parallel 
(low-noise amplifier, time-gain controller and ADC). Also, 
fine timing resolution in a conventional digital beamformer 
[5], [6] requires either digital interpolation filters or phase 
rotation calculations. The very high degree of parallelization 
in silicon must deal with heat dissipation, crosstalk inter-
ference, I/O packaging, and other issues. 

Various schemes have been suggested to reduce the 
data volume in ultrasound systems. In [7], the authors 
compressed the raw RF ultrasound data and/or the baseband 
data using JPEG and JPEG2000 techniques. This requires 
Nyquist sampling as the first stage. In [8], the authors 
demonstrated the feasibility of Compressive Sensing (CS) 
for the reconstruction of an ultrasound RF signal. However, 
interpolation filters and/or phase rotation units are required 
in the mid-end. In [9], the authors proposed a sub-Nyquist 
sampling architecture by exploiting the finite rate innovation 
of the ultrasound signal.  This system achieves 8-fold data 
reduction at the expense of a collection of dedicated pre-
conditioning filters for each transducer element.   

In this paper we present a design of the mixed-signal 
interface for portable ultrasound systems.  A Compressed 
Digital Beamformer (CDB) supporting a large transducer 
array ( ≥ 1024 elements) is proposed for a high central 
carrier frequency ( ≥ 5 MHz) portable ultrasound.  By 
converting the amplitude variation into the coded timing 
information, significant data rate reduction is achieved 
before beamforming.  Simulations show the CDB achieves a 
compression ratio (CR) of 0.1 and mean square error (MSE) 
of -27.7 dB when using a quantization level of 4 bits. 

The paper is organized as follows. Section II briefly 
reviews the CS background.  Section III introduces the CDB 
architecture.  Section IV presents the Group-based Total 
Variation (GTV) algorithm tailored for the reconstruction of 
piecewise-constant signals.  Simulations and analysis are 
given in Section V.  Finally, Section VI concludes the paper. 
 

2. COMPRESSED SENSING BACKGROUND 
 
Compressed Sensing (CS) is a framework that enables sub-
Nyquist sampling and processing of sparse or compressible 
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signals.  According to the CS theorem, any sufficiently 
sparse or compressible signal can be reliably reconstructed 
from a much smaller number of incoherent, randomized 
linear projection samples relative to the full rate Nyquist 
sampling [10].  One unique advantage of the CS technique 
is that it integrates sampling and compression into one step, 
reducing the sampling rate at the analog front-end.   

CS adopts a randomized sampling kernel and recovers 
the signal by solving an l0-norm optimization problem,  

0
min subject tox y xΦ ,                   (1) 

where Φ is an M ൈ N measurement matrix.  As shown in 
[10], problem (1) can be relaxed to an l1-norm problem 
when Φ satisfies the Restricted Isometry Property (RIP).  Φ 
can be derived from Gaussian and symmetric Bernoulli (±1) 
processes, satisfying the RIP with very high probability [11].  
In this paper we use symmetric Bernoulli processes.  Many 
algorithms were developed to solve the l1-norm problem, 
such as basis pursuit [12] and greedy approaches [13].  

 
3. COMPRESSED DIGITAL BEAMFORMER 

 
Figure 1 shows the block diagram of ultrasound imaging 
system with emphasis on the front-end and mid-end circuits.  
The CDB framework includes an asynchronous sub-Nyquist 
sampling module, called Digital-assisted Asynchronous CS 
(DACS) front-end, and a delay-and-sum (DAS) module.   
 
3.1. DACS front-end 
 
Figure 2 shows the DACS front-end.  It consists of two parts, 
a Continuous-Time Ternary Encoder (CT-TE) and algori-
thmic logic.  Suppose the input signal z(t) has been pre-
amplified to full-scale with a peak-to-peak value U.  Vref is 
the reference signal. The threshold generator divides U into 
2Q levels based on quantization bit level Q.  At each cycle, it 
provides a threshold pair (Vth,L, Vth,H) to the comparator.  The 
difference between Vth,L and Vth,H  is a quantization step L. 

Threshold pair (Vth,L, Vth,H) forms a comparison window, 
which is initialized to a  running average of the input.  When 
z(t) goes higher than Vth,H or lower than Vth,L, the comparator 
outputs “+1” or “-1”, respectively, and the threshold 
generator updates the comparison window accordingly to 
capture the input variation; otherwise, the comparator 
outputs “0”, and the threshold pair remains unchanged. As a 
result, the signal amplitude variation is modulated onto the 
ternary timing information.  Without loss of generality, we 
assign unit amplitude to “+1” and “-1” pulses.  

The CT-TE scheme differs from other amplitude-to-
time conversion schemes, including Time Encoding 
Machine (TEM) [14], delta modulation [15] and integrate-
and-fire methods [16]. Both TEM and delta modulation 
incorporate a negative feedback which once started,  always 
flip-flops, like a sigma-delta modulator output with constant 
input, and continues to generate output even with no input 
signal. The integrate-and-fire scheme also produces an 

output when no input variation occurs, resulting in signify-
cant power overhead. In contrast with the CT-TE scheme an 
output occurs only when significant input variation occurs. 

 

 
 
Figure 1. Ultrasound imaging system with emphasis on front-end and mid-
end circuity. 
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Figure 2. Architecture of the CT-TE scheme. 
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Figure 3. Block diagram of the algorithmic logic. 

 
The output of the CT-TE scheme is ternary piecewise-

constant x(t) = {-1, 0, 1}.  A discrete set of times T = {T0, T1, 
T2,…} represent the time instants of each transition edge in 
x(t).  Note that no clock is involved in the CT-TE module.  
The output is signal-driven and is asynchronous and a 
continuous function of time. 

In this architecture, we are interested in the elapsed time 
period between the successive transition edges. Let Ti→i+1 

denote the time between the ith and (i+1)th transition. Ti→i+1 

can be calculated by counting the elapsed clock cycles 
Ci→i+1 that runs at a pre-defined frequency fc,  

1 1=i i i iT C t                                        (2) 

where Δt = 1/ fc. We take fc to be much higher than the 
Nyquist rate of the input signal for sufficient timing 
resolution. Due to the ternary piecewise-constant 
characteristic, the inner product of a PN sequence with the 
zero-value sections is trivial.  Hence, the PN generator is 
halted and all timing information for these no-change 
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periods can be modulated to the next nonzero-value, as 
shown in Figure 3.  In this way, an equivalent compact 
signal xeq(n) is obtained from x(n) ,and this is input to the l1-
norm optimization.  Then, x(n) is restored from xeq(n) by 
demodulating the zero-valued sections.  Thus the DACS 
front-end enables part-time operation of the PN generation 
and randomization, which are the most power-demanding 
operations in a conventional CS scheme, such as the random 
demodulator [17]. Let us define the part-time ratio (PTR) to 
quantify the percentage of part-time operation, 

eq
1

part-time
1

i ii x

i ii x

T
r

T

 

 





 .                            (3) 

Note that xeq(n) can be described by the transition edge 
and section length. This asynchronous edges (AE) approach, 
by itself, is noise sensitive and generally results in poor 
reconstruction.  Consequently, next we propose a group-
based total variation (GTV) scheme to improve the noise 
robustness, leading to high quality reconstruction while 
maintaining significant compression. 
 
3.2. Group-based Total Variation 
 
We define a group as a collection of consecutive samples 
that have the same amplitude.  We develop a GTV scheme 
for sparse recovery from these noise corrupted measure-
ments.  The problem is to minimize the objective in (4) 

      2

2
TV GTVJ x x x y Ax                  (4) 

 

 

 

1

1

1
1

1

TV

GTV

arg max

i

N
i g
i

i

i g i g
i i i

g

x Dx

x Dx

g Dx TH Dx

 



  

 





  

           (5) 

where D is the standard first-order derivative matrix, A is a 
randomized matrix, and α and γ are tuning parameters 
balancing the TV and GTV penalties. We denote ݔ௜

௝  to be 
the string comprising samples i through j within x, gi is the 
group size from the ith sample, TH is similarity threshold. 

We adopt the iteratively reweighted least squares (IRLS) 
method [18] for sparse recovery. As shown in [18], the lp-
norm (p ≥1) can be approximated by the weighted l2-norm at 
each iteration step.  By accounting for both the TV [19] and 
GTV, the included piecewise-constant feature expedites the 
convergence speed.  Moreover, the GTV penalty mitigates 
the noise effect in the piecewise-constant sections.  The 
proposed GTV scheme is given in Algorithm 1.   

 
Algorithm 1: Group-Based Total Variation 
INPUT: the randomization matrix Φ , the received signal y, 
the threshold TH, the maximal iteration number imax, and 
the tuning parameters α and γ. 

OUTPUT: the estimation of piecewise-constant signal ݔො  
PROCEDURE:  

1. Initialize the estimated signal xt-1 = 0, the weight ௧ܹିଵ
௝ = 

1 for its jth neighbor, and the iteration count t = 1. 
2. while t ≤ imax,  do  
3. Find the gradient of x, x′ = Dx. 
4. Perform thresholding, find group size for each sample, 

௜݃= arg max g	|ݔ′௜
௜ା௚|ஶ ൑ ܪܶ ൏ ௜′ݔ|

௜ା௚ାଵ|ஶ.  
5. Calculate the weight of the least squares approximation, 

୲ܹ୭୲ୟ୪ሺ݅ሻ ൌ ᇱܦߙ
௧ܹିଵ
ଵ ሺ݅ሻܦ ൅ ∑ߛ ௝ܦ

ᇱ
௧ܹିଵ
௝ ሺ݅ሻܦ௝

௚೔
௝ୀଵ ,where 

Dj is j-shifted gradient matrix. 
6. Calculate the Least Squares solution for current 

iteration, xt = (Φ′ ∗Φ+Wtotal)
-1∗Φ′y. 

7. Update the weight of all neighbors, ௧ܹ
௝= 2*diag(1/Djxt)

8. Increment t 
9. end while and return ݔො ← xt 
 

4. SIMULATION RESULTS 
 
An ultrasound imaging system with 64 transducer elements 
is simulated to illustrate the concept. Each channel employs 
an independent CDB framework.  From the sampling and 
digitization perspective, the system architecture and simula-
tion results are readily extended to a large transducer array 
( ≥ 1024 elements) with proper scaling.   
 

 
Figure 4. Part-time ratio (PTR) and compression ratio (CR) of the CDB 
system with different quantization levels. 

 
Figure 4 shows the PTR and CR of the CDB framework 

with a carrier frequency of 5 MHz.  Suppose the Nyquist 
sampling scheme operates at 11 MHz. The comparison 
clock rate in the CT-TE module is set to 1.1 GHz, 100 times 
higher than the Nyquist rate, for sufficient timing resolution.  
As shown, PTR and CR increase rapidly with Q.  When Q is 
larger than 8, both PTR and CR become larger than 1 due to 
the oversampling.  For Q = 4, the PTR is around 0.048, 
providing more than 20-fold reduction for operating the 
randomized measurements, including the PN generator and 
accumulator modules.  Because the total power is linearly 
dependent on the operating time, the asynchronous-time 
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operation directly lowers the system power.  Note that the 
CR is roughly 0.1 with Q = 4. This implies a 10-fold 
reduction in data volume compared with Nyquist sampling, 
implying further significant power reduction.  The Gigahertz 
clocking introduces moderate complexity, although we 
employ comparators rather than a conventional ADC.  
Moreover, our approach does not require the conventional 
digital circuits for fine timing resolution, such as the digital 
filters in interpolation beamforming [5] or CORDIC units in 
phase rotation beamforming [6]. These power saving 
benefits can be applied to a large ultrasound transducer 
array configuration.  

 
 
Figure 5. Reconstruction performance of the compressed ultrasound RF 
signal by the conventional TV method and the proposed GTV scheme. 
 

 
Figure 6. Reconstruction of one scan line after digital beamforming using 
the proposed CDB framework: (upper plot) reconstructed waveform; 
(bottom plot) reconstruction error. 

 
Figure 5 compares the RF signal reconstruction of the 

GTV scheme for one transducer element at 30 dB SNR.  Q 
= 4 and the sub-Nyquist sampling ratio is set to 0.15 in all 
CS schemes used for comparison.  By evaluating the MSE 
at each iteration, the GTV exhibits better recovery than the 
AE scheme. Intuitively, randomization in the CDB 
framework makes the noise evenly distributed across the 
measurements, whereas the small valued samples in the AE 
scheme are more sensitive to noise than those with larger 
values. The CDB framework has faster convergence because 
the GTV penalty selectively chooses a direction that favors 

the piecewise-constant characteristics as the minimizer 
approaches to the optimum. The additional GTV constraint 
in the cost function expedites the convergence rate and 
increases the noise robustness.  

Figure 6 shows one reconstructed scan line after digital 
beamforming in the CDB framework.  We compare with a 
Nyquist sampling scheme using 12 bit resolution and the 
compression scheme in [8] with Daubechies wavelets (db4). 
Similar to the Nyquist sampling scheme, the CT-TE also 
introduces quantization error, which can be improved by 
increasing the quantization level Q.  Figure 6 shows that the 
CDB scheme using 5 quantization bits has better perfor-
mance than the conventional CS scheme with the wavelet 
transform, and has a peak error similar to the Nyquist 
sampling scheme with 12 quantization bits. Note that the 
relatively larger quantization errors appear near the peaks.  
In ultrasound imaging the beamformed data is typically 
compressed by a log function to reduce the dynamic range 
for display.  Hence, the quantization error introduces more 
undesired visual difference at the boundary of background 
and tissue when a small Q is employed.  This is evident in  
Figure 7, which shows reconstructed ultrasound images 
using our proposed CDB framework with the quantization 
level Q changing from 2 to 5.  Comparing to the ideal image, 
the MSE is -10.8 dB, -16.4 dB, -27.7 dB and -38.3 dB as Q 
varies from 2 to 5.  The edge error effect is well reduced 
when Q increases to 4. 

 

 
Figure 7. Reconstructed ultrasound images using the CDB framework with 
different quantization bit Q. 

 
5. CONCLUSION 

 
In this paper we presented a compressed digital beamformer 
for ultrasound imaging systems.  We showed that 
asynchronous sampling, coupled with GTV reconstruction, 
can yield results equivalent to a high dynamic range Nyquist 
rate system with significantly lower hardware complexity.  
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