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ABSTRACT

Microbubble ultrasound contrast agents (UCAs) have been
extensively used in medical ultrasound for enhancing the
echo components from blood vessels. However, their ulti-
mate promise of enhancing the echoes from the microvascu-
lature with high specificity remains unfulfilled using existing
methods. We have previously shown that the Volterra filter
can be used to enhance UCA echo components from flow
channels with dimensions similar to peripheral vessels, e.g.
the carotid artery. In this paper, we investigate a new re-
ceiver architecture based on an adaptive third-order Volterra
Filter (VF) in conjunction with beamformed echo data from
imaging tumor microvasculature in vivo. It is shown that the
cubic and quadratic components of the VF provide significant
enhancement of the UCA echoes from the tumor compared
to the echoes from the same tissue regions in the absence
of the UCA. We describe an adaptive recursive least squares
(RLS) implementation of the VF and give examples of the
contrast enhancement. Further enhancement of the UCA con-
trast is achieved by applying a dynamic statistical decision
rule that produces a parameter we refer to as the temporal
perfusion index (TPI). The TPI rewards transient echo os-
cillations while rejecting tissue motion and noise variation.
These in vivo results demonstrate the potential for advanced
signal processing in increasing the sensitivity and specificity
of medical ultrasound in imaging tissue perfusion, a form of
functional imaging.

Index Terms— Nonlinear Signal Processing, Ultrasound
Imaging, Functional Imaging, Postbeamforming Filter Banks

1. INTRODUCTION

Microbubble ultrasound contrast agents (UCAs) are increas-
ingly being used for both diagnostic and therapeutic purposes
in medical ultrasound. The majority of UCAs in use today are
gas-filled thin shells 1 - 5 µm in diameter, with the shell ma-

∗Funded in part by a grant from the Office of Vice President for Research,
University of Minnesota.

terial and construction carefully selected and designed to pro-
duce nonlinear echo oscillations when excited by the transmit
imaging beam. These oscillations mix with the (largely) lin-
ear tissue response and appear at the output of the receive
beamformed echo signal. In well perfused organs such as the
heart, the UCA echoes are prominent even in the standard
imaging mode, the so-called B-mode on clinical ultrasound
scanners. In poorly vascularized tissues such as necrotic tu-
mors and diseased tissues, however, UCA echo oscillations
are at or slightly above the noise level and cannot be ob-
served in B-mode images. Post-beamforming signal process-
ing methods have been investigated for enhancement of non-
linear echo oscillations due to UCA and suppression of tis-
sue components with the most notable being the pulse inver-
sion method [1]. Harmonic B mode imaging seeks to remove
the fundamental frequency to improve the imaging of the har-
monics at the cost of lowered imaging resolution [2]. On the
other hand, pulse inversion overcomes the trade off between
contrast and spatial resolution, but it is sensitive to tissue mo-
tion [3].

We have previously introduced the post-beamforming VF
as an efficient method for separating linear and quadratic and
cubic components in pulse-echo ultrasound. The main advan-
tages of this filter are the improved dynamic range of the data
and the rejection of additive Gaussian noise. Compared with
the pulse inversion method, the VF offers the advantage of
improved noise rejection by virtue of its rejection of additive
Gaussian noise. In addition, the VF is capable of extracting
noise components that reside within the signal bandwidth, i.e.
not a harmonic filter. We have demonstrated these advantages
in tissue mimicking flow phantoms with flow channel dimen-
sions of similar size to peripheral vessels such as the carotid
artery. However, the ultimate goal (and challenge) in UCA
imaging is detection and separation of extremely small non-
linear echo components from microvessels. This allows the
use of ultrasound to image blood perfusion in tissue, which
is most valuable in the assessment of the health of the tis-
sue, e.g. imaging necrotic tumors, ischemic tissue, etc. To
the best of our knowledge, there has been no demonstration
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of this imaging capability at frequencies suitable for clinical
use.

Our previous studies employed a minimum-norm least
squares (MNLS) algorithm for estimating the VF coefficient
using segments of echo data from selected tissue locations
representative of the UCA activity [4]. In this paper, we use
an adaptive RLS approach for estimating the VF filter co-
efficient and it is shown to provide significant improvement
in the UCA contrast enhancement. The results, using data
from in vivo imaging of tumors with heterogeneous blood
perfusion, demonstrate the ability of the VF approach to en-
hance UCA contrast in low echogenicity tissue. Furthermore,
we also demonstrate the use of a post-VF dynamic statistical
decision rule for the detection and characterization of tissue
perfusion. This temporal perfusion index (TPI) produces
significant enhancement of UCA echoes which makes easier
to visualize perfusion images fused with anatomical imaging
data. It also has the potential to quantify perfusion for clinical
applications.

2. METHODS
We describe the postbeamforming signal processing of echo
data from a clinical ultrasound scanner where the data sam-
ples are available in raw RF (radio frequency) form. As such
the data is similar to sampled data from a communication
channel, i.e. with a carrier frequency, f0, and finite band-
width, B, such that the f0 −B >> 0.
2.1. In Vivo Imaging and Data Collection
Contrast enhanced ultrasound imaging was done on dunning
AT-1 prostate cancer tumor embedded in the hind limb of a
Copenhagen rat. The rats were anesthetized with Ketamine
and Xylazine and placed in a supine position. The imag-
ing data was collected with a linear diagnostic array probe
(HST 15-8, Ultrasonix, Richmond, BC Canada) connected to
a Sonix RP commercial ultrasound scanner with a research
interface (Ultrasonix). Images were obtained before and af-
ter injection of .75 mL of MicroMarker UCA (Visual Sonics,
Toronto, ON Canada). Beamformed rf data was collected at
40 MHz sampling frequency and stored for offline processing.

2.2. Postbeamforming VF Implementation

The Volterra filter is a nonlinear filter with memory that has
been used widely in the signal and imaging processing com-
munity to separate linear and nonlinear signals [5]. For a 3rd
order VF, the input output equation is given by:

x[n+ 1] =

m−1∑
i=0

x[n− i]hL[i]

+

m−1∑
i=0

m−1∑
j=0

x[n− i]x[n− j]hQ[i, j] (1)

+

m−1∑
i=0

m−1∑
j=0

m−1∑
k=0

x[n− i]x[n− j]x[n− k]hC [i, j, k]

where x[n] is beamformer output, m is the system order,
and hL[n], hQ[n], hC [n] are the coefficients of the linear,
quadratic and cubic filter, respectively.

While nonlinear in x[n], (1) is linear in the filter coeffi-
cients. Taking the coefficient symmetry into account, (1) can
be written in compact vector form:

X[n] =[x[n], x[n− 1], ..., x[n−m+ 1],

x2[n], x[n] ∗ x[n− 1], ..., x2[n−m+ 1],

x3[n], x2[x] ∗ x[n− 1], ..., x3[n−m+ 1]]T ;

H[n] =[hL[0], hL[1], ..., hL[m− 1],

hQ[0, 0], hQ[0, 1], ..., hQ[m− 1,m− 1],

hC [0, 0, 0], ..., hC [m− 1,m− 1,m− 1]]T ;

x[n+ 1] = HT [n]X[n];

(2)

with the data and coefficient vectors as defined. This equation
can be written for M values of n, which leads to a system
of linear equation that can be solved using the pseudoinverse
(MNLS solution [1]).

2.3. Adaptive RLS Algorithm

The advantages of RLS adaptive filter formulation are well
established for the linear case and they continue to hold in the
VF case. In general, the RLS algorithm achieves fast conver-
gence while producing small steady-values of the ensemble-
average squared error [6]. In this paper, the following adap-
tive RLS algorithm was used:

k[n] =
P [n− 1]X[n]

λ+XH [n]P [n− 1]X[n]]
,

ξ[n] = x[n+ 1]−HH [n− 1]X[n],

H[n] = H[n− 1] + k[n]ξ∗[n],

P [n] = λ−1(P [n− 1]− k[n]XH [n]P [n− 1])

(3)

where ξ[n], P [n] and k[n] are the prior estimate error. the
inverse of the correlation matrix, and the Kalman gain vector,
respectively.

2.4. Temporal Perfusion Index

The use of the VF improved dynamic range and SNR at the
output of the VF, in addition to its higher sensitivity to non-
linear oscillations, improves the detection of the UCA, espe-
cially in low echogenicity regions. However, it is possible to
achieve further enhancement of the UCA oscillations by em-
ploying a dynamic decision rule or metric that rewards the
variance of the echo strength over finite horizon. This is due
to the fact that the echogenicity of microbubbles in low per-
fusion, low echogenicity tissue is a transient event, i.e. oscil-
lations appear and disappear with the incoming and outgoing
microbubbles. One such metric is the TPI metric [7], which
seeks to find the locations where the signal varies transiently
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over time, and thus can be assumed to be representative of
microvasculature. The equation for TPI is defined by

TPI(x, z, t) =
var {I(x, z, t)}

mean2 {I(x, z, t)}
, t ∈ [t0 − T, t0], (4)

where, x and z are the lateral and axial coordinates of the
pixel, and t0 is the time (frame) index. T is appropriately se-
lected based on the subjects’ motion (breathing, heart cycle,
etc...) and effectively be chosen to correspond to one respi-
ratory cycle. The TPI metric is applied on the filtered log-
compressed imaging data of each component acquired from
the output of the TVF.

Variance is sensitive to the movement. In order to enhance
the perfusion movement, especially the small echoes, mean
square is needed to normalize the result. Therefore, TPI is
a good way to display microbubble movement while distin-
guishing perfusion from stationary or even small movement
tissues.

3. RESULTS AND DISCUSSION

The adaptive RLS algorithm described above was run using
m = 15 to find the kernel coefficients. The algorithm proved
to be superior to the MNLS approach in terms of minimiz-
ing the prediction error and its convergence was fast as ex-
pected. Specifically, convergence was achieved in 173 steps
(samples) using an echo segment from a high echogenicity
region at tumor-tissue boundary. The MNLS VF appeared to
consistently overestimate the high frequency signal compo-
nents sometimes exceeding the energy observed at the beam-
former output. Therefore, we only show the results from the
adaptive RLS VF as a preferred implementation from both the
performance and feasibility stand points.

3.1. Spectral Analysis of Adaptive VF Outputs

Analysis of the spectral characteristics of the VF output com-
ponents with and without UCA oscillations sheds light on the
potential for contrast enhancement. Figure 1 (top) shows the
PSD of the linear, quadratic, and cubic components of the
adaptive RLS VF using data segments from the tumor region
with and without contrast. Note that the linear components
represent the corresponding beamformer output components
(input to the VF) and are not shown to save space. The out-
puts from the linear, quadratic, and cubic components are con-
sistent with our previous observations using the second-order
and third-order VF with pulse-echo ultrasound, e.g. quadratic
components with peaks near DC and near the 2nd harmonic,
cubic components near the fundamental and 3rd harmonic).
More importantly, the sensitivity to the presence of UCA is
evident throughout the spectrum. One can also observe that a
higher relative UCA enhancement can be expected using the
cubic component compared to the quadratic component. The

latter, in turn, has the potential of improving enhancement
compared to the linear component.

Figure 1 (bottom) shows the PSDs obtained from the three
adaptive RLS output components obtained when the input RF
data were from a high echogenicity tissue region. While the
spectra show some sensitivity to the presence of contrast in
this case, the differences indicate that the potential for dis-
crimination is diminished compared to the low echogenicity
case described above. The nonlinear components are rela-
tively higher in this case, with and without UCA, indicating
that the beamformed data has significant nonlinear compo-
nent due to propagation.

Fig. 1. PSDs of post-beamforming signal components (linear,
quadratic, and cubic) from representative tumor echoes (top)
and representative tissue+ tumor echoes (bottom).

3.2. Statistical Distribution of VF Output Components

The statistical distribution of the filter outputs enlightens the
design of subsequent steps in the receiver signal processing
chain. Figure 2 shows histograms of log-compressed out-
puts from the VF filter components with and without contrast
agents. The top panel shows histograms from 72 image lines
passing through the tumor while the bottom panel shows the
histograms from the whole frame data.
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Fig. 2. Histograms of the output components of the VF with
and without contrast: Top: Tissue+Tumor from beamformed
image lines passing through the tumor. Bottom: Data from
the whole image frame.

Both sets of histograms show that all three components
of the VF output have sensitivity to UCA as demonstrated by
the increase in the mean. However, the histograms in the top
figure are more likely to separate the UCA and tissue com-
ponents. In addition, they appear to be multimodal while the
histograms generated from the whole frame appear to be uni-
modal Fisher-Tippet distribution. In this paper, we simply
used these histograms to define thresholds for the dynamic
range of each image component for the purpose of computing
the TPI.

3.3. Temporal Perfusion Index

Based on the spectral representation and the histograms
shown above, we have computed the TPI using the cubic
component of the adaptive VF output after limiting the dy-
namic range to 120 dB. To illustrate the value of the TPI, we
show a spatial temporal representation of this quantity along
one image line passing through the tumor with and without
UCA. The false color images in Figure 3 show a spatial-
temporal representation of the TPI for one image line passing
through the tumor without (top) and with (bottom) UCA.
One can see the drastic difference in visibility of transient
components within the tumor boundaries when the UCA is
present.

4. CONCLUSION

This paper presented the first full demonstration of the ca-
pabilities of the VF, when implemented in adaptive RLS fil-
ter form, to detect the minute changes in echogenicity due to
nonlinear oscillations generated by UCA microbubbles under

Fig. 3. Spatial-temporal representation of TPI along one im-
age line passing through the tumor. Labeling in pixels axially
and in frame number laterally. The tumor segment extends
from 200 – 450 axially. Top: TPI without UCA. Bottom: TPI
with UCA.

the influence of diagnostic imaging beams. Compared to the
raw RF data, the quadratic and cubic outputs of the adaptive
RLS VF exhibit higher sensitivity to the presence of UCA os-
cillations in tumor and normal tissues. In this paper, we have
used the adaptive RLS VF to process In vivo echo data from a
poorly vascularized tumor implanted in a small animal, which
is highly relevant for current research and future clinical ap-
plications. These result highlight the role of signal processing
in moving medical ultrasound imaging to provide more quan-
titative and/or functional imaging, which is the future of all
medical imaging.
Relationship to Prior Work: To the best of our knowledge,
this paper presents the first exposition of the spectral and sta-
tistical characteristics of the linear and nonlinear VF outputs
resulting from echo data generated by a normal and tumor
tissues in vivo. Compared to our previous work [4], we have
established the adaptive RLS implementation as the method
of choice not only from the error minimization viewpoint, but
also from a practical implementation one. We are currently
investigating the regional statistics of ultrasound images in
tumor and healthy tissue and their implication on the design
of perfusion measures such as the TPI.
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