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ABSTRACT
Predicting the course of influenza rates is extremely useful
for the efficacy of planned vaccination programs. In this pa-
per we address this problem by stating a dynamic state-space
model that mathematically describes both the evolution of in-
fluenza rates and the observations obtained by a surveillance
system. We then propose a prediction method based on par-
ticle filtering that accommodates the nonlinear nature of the
model. Using real data we estimate the necessary model func-
tions prior to the prediction step. Computer simulations reveal
promising results of the proposed method.

Index Terms— Time series prediction, nonlinear sys-
tems, particle filtering, influenza.

1. INTRODUCTION

Influenza is a well known and common human respiratory in-
fection. It is responsible of significant morbidity and mor-
tality every year. The World Health Organization estimates
that annual epidemics result in about 3 to 5 million cases of
severe illness and about 250,000 to 500,000 casualties world-
wide [1]. Surveillance systems are important tools for detec-
tion and monitoring of infectious diseases since they allow
for quick response and planning of health resources. Further-
more, the prediction of the evolution of influenza is of major
interest if one aims at advancing the response time.

The objective of surveillance systems is to provide an in-
dicator as soon as data gives enough evidence to assess the
disease outbreak [2]. In [3], the authors presented a tool to an-
alyze epidemiological data. They used non-epidemic training
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data to fit a time-series model for the periodic baseline level.
Another method proposed to detect deviations from the base-
line based on fitting historical data to a time-series regression
model [4], [5]. In [6] a switching Markov model was used
with an autoregressive process to model epidemic data and
a white Gaussian process for non-epidemic modeling. Other
references point to imaginative usage of the big data such as
[7, 8]. The present paper contributes with an online method
for outbreak prediction. We propose a procedure to build the
model and pay special care in designing the prediction algo-
rithm, which is based on Bayesian theory.

The objective of this paper is to obtain a new algorithm for
prediction of the evolution of influenza incidence rates over
time. The inputs of the algorithm are the records of influenza
cases at the t-th epidemiological week (EW) of the season of
interest and a model of the system built using prior knowledge
of previous seasons.1 We aim at predicting the behavior of the
influenza incidence rates for later EWs of the season in study.
Although we consider linear-noisy measurements of the in-
cidence rates, the dynamics of epidemiological data are non-
linear. Therefore, we use particle filtering [10] to design the
prediction algorithm. Particle filters perform a discrete char-
acterization of the posterior distribution of the system based
on a properly weighted random set of points, which is suitable
in nonlinear/non-Gaussian systems.

The rest of the paper is organized as follows. Section 2
describes the dynamical model of the system and the method
used to build the necessary functions from existing data. The
prediction algorithm based on the particle filtering method-
ology is presented in Section 3. Section 4 discusses com-
puter simulations performed to evaluate the method and the
obtained results. Finally, Section 5 concludes the paper.

1In particular, for model building we use real data from Diagnosticat, an
existing open-access database of the Catalan Institute of Health [9]. These
data is also used for evaluation of the resulting method.
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2. SYSTEM MODEL FOR INFLUENZA
SURVEILLANCE SYSTEMS

We consider a state-space model for influenza dynamics that
is driven by Gaussian processes. Particularly, we assume that
the surveillance system is weekly recording noisy samples of
the true incidence rates, yt, modeled as

yt = xt + nt, (1)

where t = 1, · · · , T , is an index denoting the EW,2 xt is the
targeted influenza incidence rate at the t-th EW, and nt is a
zero-mean Gaussian noise with variance σ2

y , which models in-
accuracies of physicians when diagnosing cases of influenza.
Typically, yt is normalized per 105 population, a unit that al-
lows comparison of diagnoses over different territories inde-
pendently of the number of inhabitants [11].

The model for the observations of the system given by (1)
is rather straightforward. However, the selection of a mean-
ingful model for the time-evolution of influenza is more in-
volved and here we represent it in very general terms as

xt = ft(xt−1) + νt, (2)

where ft(·) is a known, possibly nonlinear, function of the
state xt, and νt is the state noise noise, which gathers any
mismodeling effects or disturbances in the state characteriza-
tion. We assume that νt ∼ N (0, σ2

x,t), and that in general,
σ2
x,t can be time-dependent.

2.1. Building the state function

There have been some attempts to model ft(·) in the litera-
ture. For instance, [4] proposed a method to detect deviations
from the baseline based on fitting historical data to a time-
series regression model. The resulting function was obtained
by combination of a linear term describing the secular trend
with sine and cosine terms describing seasonal change.

In this paper we propose a procedure to build ft(·) based
on processing a set of existing influenza season data. We
use the open-access database Diagnosticat [9], which con-
tains clinical influenza diagnoses codes updated weekly us-
ing an electronic health recording system where primary care
physicians routinely register their activity. The website is
timely updated a few minutes after the last day of the EW
and accounts for entries of over 3,500 physicians collecting
data of nearly 6 million people (80% of the population of the
surveilled area) [9].

The function ft(·) is generated by processing a set of L
training seasons, denoted as T = {y(1), . . . ,y(L)}, where
y(j) = y

(j)
1:T corresponds to the observation sequence of the

2In epidemiology and surveillance of infectious diseases the EW is the
time unit for interpretation of data. The EW is a group of seven days that
begins on a Sunday and ends on a Saturday. One year may have 52 or 53
EWs depending on the beginning of the first week.

j-th season of the training set. In particular, from each sea-
son series y(j) one could obtain a function fitting the data,
f
(j)
t (·). We set the condition that the resulting function has

the characteristic that each point of the time series depends
on the previous one, as in (2). This property allows for build-
ing a state-space model with the Markov property, which is
then used to design the Bayesian predictor.

Under the assumption that σ2
y is small, we can consider

that f (j)t (xt−1) ≈ f (j)t (yt−1) and as a result of processing T ,
we obtain the set of approximated functions per training sea-
son F = {f (1)t , . . . , f

(L)
t }. Once each function correspond-

ing to the different seasons is obtained, the function for the
state equation (2) can be constructed with weighted mean and
unbiased variance as follows

ft(xt−1) =

L∑
j=1

α(j)f
(j)
t (xt−1) (3)

σ2
x,t =

1

1−
∑L
j=1

(
α(j)

)2 L∑
j=1

α(j)(y
(j)
t − f

(j)
t (xt−1))

2,

(4)
where α(j) ≥ 0 represents the weight given to the data from
the j-th season, with

∑
j α

(j) = 1. Note that the method is
quite versatile and could be adapted to the modeling of other
diseases.

As stated, the fitting of f (j)t (yt−1) given y(j) can be done
in different ways [12]. The scope of this work is to propose a
new prediction method for influenza incidence rates, but it is
necessary to use a model for its functioning. For that reason,
we resorted to the software tool Eureqa [13], which allows
for detection of equations and hidden mathematical relations
in data. We used 4 influenza seasons available in Diagnosticat
[9] with a fitness metric minimizing the mean of the absolute
value of residual errors. The resulting expressions were

f
(1)
t (xt−1) = (1.548 + 0.3443xt−1 − cos(xt−1)

− 0.06626xt−1 cos(0.1253x
2
t−1)

)
/a1

f
(2)
t (xt−1) = xt−1 + (xt−1t cos(0.4435t)

+ xt−1 sin(6.12 + xt−1) cos(0.4435t)

+ xt−1t cos(0.4435t) cos(0.4435t))

× (60.6 + 0.8503xt−1)
−1

f
(3)
t (xt−1) = 0.1704 + 0.9154xt−1

+ (0.03797xt−1t− 1) sin(0.09343xt−1t)

− 0.5854xt−1t sin(0.09343xt−1t)

7.625 + xt−1 − cos(−0.5854xt−1t)
+ 0.09343xt−1 sin(0.1353xt−1t)

f
(4)
t (xt−1) = 0.1365t cos(0.1081t)

+
2.173 + xt−1 + t

0.2446t+ cos(0.4403t)

with a1 = cos(4.931 + 0.05115t). Eureqa also reported
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the following R2 goodness-of-fit measures: 0.99757973,
0.99664044, 0.99718319, and 0.9968961 corresponding
to each season in the database, respectively. Recall that
0 ≤ R2 ≤ 1 is used to describe how well a regression line fits
a set of data with values close to 1 indicating agreement.

The obtained fitting, along with the data used, can be seen
in Fig. 1. It is important to notice that the influenza sea-
son 2009-2010 presented a different temporal pattern due to
the A(H1N1) Influenza virus pandemic [14, 15, 16]. That
epidemic season had higher incidence rates and took place
some weeks before than regular seasonal influenza. This fact
should be taken into consideration when building the model
for the prediction method, as it could bias the results. The cor-
responding weight, α(2), will reflect a low importance value
with respect to the rest of seasons in the database.
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Fig. 1. Weekly recorded data (circles) and approximated
functions f (j)t (xt−1) using Eureqa (dashed lines) for the in-
fluenza seasons 2008-2012 in the Diagnosticat’s database.

3. PREDICTION BY PARTICLE FILTERING

In this section, we propose a prediction algorithm that uses
both the noisy observations and the dynamic model previ-
ously described. Since the latter is clearly nonlinear, we use
the particle filtering methodology [17, 18], which is specially
suitable for this type of problems. The objective is to approx-
imate the step-ahead prediction distribution, p(xt+τ |y1:t),
with τ ≥ 1 ∈ N being the number of step-ahead EWs that we
want to predict and y1:t = {y1, . . . , yt} the available data.

Generally speaking, particle filtering approximates the
filtering distribution p(xt|y1:t) by a set of N weighted ran-

dom samples, forming the random measure
{
x
(i)
t , w

(i)
t

}N
i=1

.
These random samples are drawn from an importance density

x
(i)
t ∼ π(xt|x

(i)
0:t−1, y1:t), (5)

and weighted according to

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)0:t, y1:t−1)p(x
(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1, y1:t)

. (6)

The choice of the importance density is critical in design-
ing an efficient particle filtering method. It is well-known
that the optimal importance density is π(xt|x(i)0:t−1, y1:t) =

p(xt|x(i)t−1, yt), and it minimizes the variance of importance
weights. In that case, the weights in (6) reduce to w(i)

t ∝
w

(i)
t−1p(yt|x

(i)
t−1). This choice requires the ability to draw from

p(xt|x(i)t−1, yt) and to evaluate p(yt|x(i)t−1). In general, the two
requirements cannot be met and one needs to resort to subop-
timal choices. However, the state-space model assumed here
is Gaussian, with a nonlinear process equation while the ob-
servations are linear. Therefore, we are able to use the optimal
importance density [17] and the proposal distribution tuns out
to be

p(xt|x(i)t−1, yt) = N (µ
(i)
π,t, σ

2
π,t) (7)

with

µ
(i)
π,t = σ2

π,t

(
ft(x

(i)
t−1)

σ2
x,t

+
yt
σ2
y

)
(8)

σ2
π,t =

(
1

σ2
x,t

+
1

σ2
y

)−1
, (9)

and the importance weights can be updated using

p(yt|x(i)t−1) = N (ft(x
(i)
t−1), σ

2
x,t + σ2

y). (10)

The particle filter provides a discrete approximation of the
filtering distribution of the form p(xt|y1:t) ≈

∑N
i=1 w

(i)
t δ(xt−

x
(i)
t ). However, in the problem of predicting the time-course

of influenza cases, we are interested in the estimation of the
step-ahead prediction distribution

p(xt+τ |y1:t) =
∫
p(xt|y1:t)

(
t+τ∏
k=t+1

p(xk|xk−1)

)
dxt:t+τ−1

≈
N∑
i=1

w
(i)
t

∫
p(xt+1|x(i)t )

(
t+τ∏
k=t+2

p(xk|xk−1)

)
dxt+1:t+τ−1

(11)

where one uses the approximation of the filtering distribution
given by the particle filter. In order to evaluate the integrals
in (11), we extend the particle trajectory x(i)0:t with x(i)t+1:t+τ .
For each particle, i = {1, . . . , N}, the predicted trajectory is
sequentially computed as

x
(i)
k ∼ p(xk|x

(i)
k−1), x

(i)
0:k ,

(
x
(i)
0:k−1, x

(i)
k

)
(12)

1048



2009 2010 2011 2012

0

50

100

150

200

250

300

350

400

t [Epidemiological week]

R
at

e 
pe

r 
10

5  p
op

ul
at

io
n

 

 
Data
α1, τ=1

α1, τ=2

Fig. 2. Prediction results for the 4th epidemiological season.
Parameters: α1 = [1/3, 1/3, 1/3, 0]; τ = {1, 2}.

with k from (t + 1) to (t + τ). Then, the algorithm provides
an estimate of the τ step-ahead prediction distribution as

p(xt+τ |y1:t) ≈
N∑
i=1

w
(i)
t δ(xt − x(i)t+τ ) (13)

from which one can predict the time-course of xt+τ given
measurements up to time t as

x̂t+τ |t =

N∑
i=1

w
(i)
t x

(i)
t+τ . (14)

As a final step, particle filters incorporate a resampling
strategy to avoid collapse of particles into a single state point.
Resampling consists in eliminating particles with low weights
and replicating those in high-probability regions [19].

4. RESULTS

We used the open database described earlier to train the
model, test the prediction algorithm, and assess its perfor-
mance. Recall that we have four seasons in the database. The
goal of the experiments was to predict the evolution of rates
in the fourth season. Therefore, it is important to keep in
mind when inspecting Figs. 2–3 that only results from the
fourth season are meaningful for practical use, and the rest of
the seasons’ data were used to build the model.

The step-ahead prediction was adjusted via the param-
eter τ (in units of EW). The larger the value of τ , the
poorer the results are expected if the model is not accu-
rately known. We fixed N = 1000 particles and σ2

y = 10−4.
Figures 2 and 3 show the prediction of influenza incidence
rates over time (EWs) with 2 configurations of the weight
vector to build the model (equations (3)-(4)), defined as
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Fig. 3. Prediction results for the 4th epidemiological season.
Parameters: α2 = [1/2, 0, 1/2, 0]; τ = {1, 2}.

α1 = [α(1), α(2), α(3), α(4)]. Namely, we considered a first
configuration where the model was trained using the first
three seasons, α1 = [1/3, 1/3, 1/3, 0]; and another configu-
ration where the second season was not considered, since it
had a pattern differing from the nominal behavior due to the
A(H1N1) pandemic, α2 = [1/2, 0, 1/2, 0]. The results were
obtained for τ -step ahead predictions of 1 and 2 weeks.

We evaluated the performance of the predictive method
by obtaining the root mean square error (RMSE) of the fourth
season, in same units as the influenza incidence rates. With
α1, the RMSE was 18.83 and 41.10 for τ = 1 and 2, re-
spectively. For α2, the RMSE was 19.02 and 31.27, respec-
tively. One can conclude that including the second season
provides the state-model with larger variances that might help
the method when data from new seasons does not follow a
“regular pattern.” This is the case of the fourth season with
respect to the first and the third. For τ = 1, the configuration
with α1 shows slightly better results. However, for τ = 2,
the inclusion of the second season results in noisy predictive
results and it seems more convenient to use α2.

5. CONCLUSIONS

In this paper, we introduced a new algorithm for prediction
of the evolution of influenza incidence rates over time. The
parameters of the system are obtained using real data and the
resulting model is nonlinear. The particle filtering method-
ology is employed for approximation of the predictive distri-
bution of the state of the system, and by use of the optimal
importance density. Computer simulations provide promising
results and reveal accurate prediction of the influenza rates.
Notice that Eureqa was used for data fitting, but future work
includes fitting with simple, yet representative, functions to
obtain the model of the influenza evolution.
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