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ABSTRACT

In this paper, we present a new gait analysis method using 3D
body motion reconstruction with an activity-specific tracking
protocol. A kinematic chain modeling the movement of lower
extremities was constructed for general lower body activity
monitoring. By exploring the nature of walking, a constrained
forward-backward statistical linearized sigma-point Kalman
Smoother with periodic state vector resetting was developed.
This tracks the dynamic joint configuration during walking.
Direct experimental evaluation was provided by step length
computation as well as complete motion reconstruction. This
method has demonstrated stable long term tracking of walk-
ing and yields greater than 95% accuracy for step length esti-
mation.

Index Terms— 3D body motion tracking, motion recon-
struction, step length estimation.

1. INTRODUCTION

Many of the most urgent problems in health and wellness
promotion, diagnostics and treatment of neurological disease
require accurate, reliable and detailed monitoring of human
motion. For example in the United States alone, approxi-
mately 795,000 strokes occur each year. Here the capabil-
ity to provide remote, in-community monitoring and analysis
of lower extremity mobility and its corresponding character-
istics is essential for improving exercise tolerance and pro-
viding at-home physical rehabilitation, both central in reduc-
ing recurrent stroke and myocardial infarction, dependence
on others and the cost of care [1, 2]. Now, an urgent need ex-
ists for methods that harness low cost wireless inertial sensing
platforms to provide accurate and reliable classification of de-
tailed human motion characteristics.
Due to the important benefits demonstrated by the monitor-
ing and analysis of gait characteristics, a number of methods
have been proposed that replace the century-old traditional
method of manual evaluation. In clinic environments, com-
plex motion laboratory facilities are sometimes used that can
obtain accurate tracking of lower limbs with kinematic and
force characteristics, however these system are prohibitively
expensive outside of major hospitals and they cannot be de-

ployed in the community due to space requirements. In [3], a
gait analysis system was developed for detecting strides for
patients afflicted with Alzheimers patients. In [4], a tem-
plate based system is used to determine individual strides of a
subject with wearable accelerometers. While there are many
more examples of gait analysis methods using inertial sensor
data, they all suffer from a major shortcoming: the features
obtained are not informative of physical motion characteris-
tics most needed by clinicians. This produces challenges for
clinicians who require results critical to evaluation of physical
motion for diagnostics or assessment of rehabilitation.
This paper presents a new gait analysis method that exploits
an activity-specific tracking protocol to reconstruct 3D mo-
tion of lower extremities during walking. The paper provides
the following contributions: 1) An activity-specific tracking
protocol providing motion characterization without reliance
on prior system training; 2) A general trunk-thigh-leg kine-
matic chain applicable to lower extremity activity modeling;
3) A stable tracking algorithm for long term walking monitor-
ing and gait analysis in 3D space; 4) A linear model to esti-
mate step length with high accuracy as required by clinicians
for gait quality assessment.

2. ACTIVITY-SPECIFIC TRACKING PROTOCOL

When analyzing human movements, the human body can be
decomposed into 9 segments [5]. To characterize full-body
motions, we need to describe joint configuration, rotation an-
gle between each part of body segments [5]. However, to
analyze a specific activity, not every joint angle may be of
interest. For example, when post-stroke patients are adminis-
tered with the Wolf Motor Function Test [6], the examiner
will focus exclusively on the movements of upper extrem-
ity segments and the dynamic configuration of the connect-
ing joints. The development reported here is focused on a
new activity-specific tracking protocol where for each activ-
ity, only those segments of interest are tracked and the type
of the connecting joints as well as their degree of freedom
(DOF) will depend on the nature of the activity. In this paper,
we focus on the activity-specific tracking protocol applied to
walking. This is selected since it provides the most compre-
hensive test of this new method due to the complex nature
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of walking. Success in walking characterization then demon-
strates applicability of this method to many other activities.

2.1. Kinematic Chain to Characterize Walking

Following the approach applied in robotics, a manipulator is
characterized by a kinematic chain, which is equivalent to a
sequence of links connected by joints. A 4×4 transformation
matrix with 4 parameters, a, α, d and θ can be easily cal-
culated to relate two consecutive links connected by a 1DOF
joint after carefully assigning the frame to each link [7]. This
convention has been applied to characterize body joint move-
ments by decomposing a multi-DOF joint into a set of 1DOF
joints with 0-length links between them [8, 9].
To characterize human walking, segments of interest are the
thigh and leg. A kinematic chain may be constructed after
performing joint decomposition for the hip and knee joint
[8, 9], however, a closer observation reveals that in addition
to the segment rotation, a linear translation of the trunk is
required to render a comprehensive motion analysis. Thus,
three 1DOF pseudo joints are used in the center of the body
weight to incorporate the freedom of linear translation.
A joint only allowing rotation about a single axis is a revolute
joint while a joint only permitting linear translation along a
single axis is prismatic joint. Overall, a 9-1DOF-joint kine-
matic chain consisting of 3 prismatic joints to characterize
body translation and 6 revolute joints to characterize segment
rotation can be used to track walking, assuming all the joints
of interest have 3 degrees of freedom (Fig. 1).
Since the frame assignment in Fig. 1 strictly follows the D-

Fig. 1: Kinematic Chain Developed to Characterize Walking
with Sensor Deployment

H convention [7], a 4-parameter transformation matrix T i−1
i

can be used to define the frame attached to Link i referenced
in the frame of its adjacent Link i− 1

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 ,
(1)

Table 1: D-H Parameters in the Tracking Protocol of Walking

i di θi i di θi i di θi

1 d1 π/2 4 0 θ4 7 0 θ7

2 d2 π/2 5 0 θ5 8 0 θ8

w d3 π/2 t Lht θ6 l Lkl θ9

3 d3 π/2 6 Lhk θ6

where ai is the distance from Oi to the intersection of the
xi and zi−1 axes along xi; di is the distance from Oi−1 to
the intersection of the xi and zi−1 axes along zi−1; αi is the
angle between zi−1 and zi measured about xi; and θi is the
angle between xi−1 and xi measured about zi−1 [7]. If the
joint between Link i − 1 and Link i is prismatic, di will be
variable. Otherwise, it will be θi. Table 1 shows the D-H
parameters in the tracking protocol of walking where Lht is
the distance from hip to the sensor mounting position on the
thigh, Lhk is the distance from hip to knee, Lkl is the distance
from knee to the sensor mounting position on leg (ai and αi

are always 0 and π/2 in our case).

2.2. Velocity and Acceleration Propagation

Sensors are applied at the waist, thigh and leg (Fig. 1) with
their measurements yielding information related to segment
movements from the base (Link 0) up to the point of sensor
application. This section discusses the propagation of veloc-
ity and acceleration from link to link.
In walking, body segments experience two kinds of move-
ments: translation and rotation. Thus, we need to derive
both linear and angular velocity and acceleration of the sensor
mounted body segments. The angular velocity of Link i + 1
is the angular velocity propagated from Link i plus the new
component added by Joint i+ 1

ωi
i+1 = Ri

i−1ω
i−1
i + θ̇i+1z

i
i , (2)

whereRi
i−1 is the transpose of the top-left 3×3 sub-matrix of

T i−1
i . The linear velocity of Link i + 1 is the linear velocity

propagated from Link i plus the component caused by the
rotational velocity of Link i plus the new component added
by Joint i+ 1

vii+1 = Ri
i−1(v

i−1
i + ωi−1

i ×Oi−1
i ) + ḋi+1z

i
i , (3)

where Oi−1
i is the top-right 3 × 1 vector of T i−1

i . By calcu-
lating the derivative, the angular and linear acceleration from
Link i to Link i+ 1 is formulated in Eq. (4) and (5).

ω̇i
i+1 = θ̇iz

i−1
i−1 ×R

i
i−1ω

i−1
i +Ri

i−1ω̇
i−1
i + θ̈i+1z

i
i , (4)

v̇ii+1 = θ̇iz
i−1
i−1 ×R

i
i−1(v

i−1
i + ωi−1

i ×Oi−1
i ) +Ri

i−1v̇
i
i+1

+Ri
i−1(ω̇

i−1
i ×Oi−1

i ) +Ri
i−1(ω

i−1
i × ḋizi−1

i−1) + d̈i+1z
i
i .

(5)
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2.3. Tracking Algorithm

9DOF sensors integrated with a 3-axis accelerometer, a 3-axis
gyroscope and a 3-axis magnetometer are used to collect mo-
tion data. In this section, we formulate the state model and
measurement model to estimate the joint configuration from
the sensor signals.
The state transition equations, which describe the evolution
of joint configuration are given by

d̈i[n+ 1] = αld̈i[n] + ul[n] (6)

θj [n+ 1] = θj [n] + θ̇j [n]T +
1

2
θ̈j [n]T

2 (7)

θ̇j [n+ 1] = θ̇j [n] + θ̈j [n]T (8)

θ̈j [n+ 1] = αaθ̈j [n] + ua[n], (9)

where i = {1, 2, 3} and j = {4, ..., 9}, d̈i[n] is the linear
acceleration of Joint i at time n, θj [n], θ̇j [n], and θ̈j [n] is
the angular displacement, velocity and acceleration of Joint
j at time n, ul[n] and ua[n] are both white noise processes
with zero mean, αl and αa are process model parameters, and
T is the sampling period. These formulations were derived
following the assumption that both the linear and angular ac-
celerations are constant during a sampling interval and they
can be fit into a first-order zero-mean autoregressive process
characterized by parameter αl and αa.
The measurement equations, which describe the relationship
between the joint configuration and sensor measurements are
given by

zwa [n] = Rw
0 g

0 +Rw
2 v̇

2
w[n] + vwa [n], (10)

zta[n] = Rt
0g

0 +Rt
5v̇

5
t [n] + vta[n], (11)

ztg[n] = Rt
5ω

5
t [n] + vtg[n], (12)

ztm[n] = Rt
0m

0 + vtm[n], (13)

zca[n] = Rc
0g

0 +Rc
8v̇

8
c [n] + vca[n], (14)

zcg[n] = Rc
8ω

8
c [n] + vcg[n], (15)

zcm[n] = Rc
0m

0 + vcm[n], (16)

where zwa [n] is the measurement of the waist accelerometer
at time n, zta[n], z

t
g[n], and ztm[n] is the measurement of the

thigh accelerometer, gyroscope and magnetometer at time n,
zca[n], z

c
g[n], and zcm[n] is the measurement from the leg sen-

sor at time n, vwa [n], v
t
a[n], v

t
g[n], v

t
m[n], vca[n], v

c
g[n], and

vcm[n] are all white noise processes with zero mean, and g0

and m0 is the gravity and magnetic field projected in Link
0. The propagation of kinematic parameters between two ar-
bitrary links such as v̇2w[n] can be formulated based on the
recursive equations introduced in Section 2.2.
Filtering technique is used to track the dynamic joint configu-
ration by two steps, state update and measurement update. We
assume within a gait cycle, linear displacement of the body
center is dominated by the component along the walking di-
rection and the thigh and leg rotation is on the Sagittal Plane.
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Fig. 2: Detection of Walking Phases in a Gait Cycle.

These constraints are incorporated into an Unscented Kalman
filter by projecting the sigma points which are outside the fea-
sible region onto the boundary of the feasible region in the
time-update step [10]. Another assumption to model walking
is based on the observation that when one leg is in mid-swing,
the other will be in mid-stance with the hip, knee and ankle
joint in a line perpendicular to the ground. Thus, a 3-axis gy-
roscope is placed on the opposite leg to detect the mid-swing,
which corresponds to the mid-stance of the tracked leg. This
information can be used to reset the state vector periodically
by the same projection method. In addition, a backward filter
is applied within each gait cycle where the mid-stance sig-
nifies the start and the end. Overall, a constrained forward-
backward statistical linearized sigma-point Kalman Smoother
[11, 12] is used with periodic state vector resetting to track
walking.

3. EXPERIMENT

3.1. Data Collection

Four 9DOF Razor IMUs are used to acquire motion data and
the measurements are sent wirelessly through a bluetooth mo-
dem to a tablet. Sensors were attached to subjects’ waist,
thigh and leg with the x-y plane aligned with the Sagittal
Plane and the y-axis along the gravity. All the sensors were
sampling at 50Hz and signature motions were put at the start
and end of each data sequence for synchronization. Stride
length was measured directly using a ruled floor surface as
well as a means of marking shoe contact by application of
marking liquid to the shoe.

3.2. Walking Phase Detection

The walking phases of interest are toe-off, mid-stance and
heel-strike, where toe-off and heel-strike are used to estimate
step length (described in the subsequent section). Previous
work introduced walking phase decomposition using a foot-
mounted gyroscope [13]. Since our sensor deployment is dif-
ferent, the signals of an ankle and foot mounted gyroscope
are compared. Fig. 2 shows the decomposition result using
an ankle-mounted gyroscope.
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3.3. Visual Reconstruction and Step Length Estimation

The tracking algorithm yields the dynamic joint configuration
which is used to render visual reconstruction of body motions.
However, since the accelerometer is the only sensor to col-
lect body translation related measurements, this estimate is
not sufficiently trustworthy. Thus, only thigh and leg rotation
were reconstructed. From the visual reconstruction, the algo-
rithm of walking phase detection is verifiable.
Step length can be estimated through motion reconstruction.
The component of the linear displacement of foot from toe-off
to heel-strike along the axis of walking direction was calcu-
lated as L. Since L only accounts for the displacement caused
by segment rotation, a linear model was applied to estimate
the step length in order to compensate the component of body
translation, which is formulated as

SL = a× L+ b, (17)

where SL is the step length, and a and b are two parameters
that need to be trained.

3.4. Result

The tracking algorithm has been tested on 10 subjects, whose
hip positions vary from 1.09m to 1.44m measuring from the
ground. Every subject walked normally for approximately
40 strides in each trial after a short pause to initialize the
tracking algorithm (sample zta[0], z

t
m[0]. zca[0], z

c
m[0] and

the gyroscope offset). Fig. 3 illustrates an example of the
estimation result of the six revolute joint configuration during
walking by employing different algorithms (only the last few
steps were cropped for better illustration). Comparison were
made among the regular Unscented Kalman filter (UKF),
the constrained UKF assuming limb rotation is exclusively
on the Sagittal Plane, the constrained UKF with periodic
state vector resetting and the constrained forward-backward
statistical linearized sigma-point Kalman Smoother with pe-
riodic state vector resetting. By noting that walking is a
repetitive activity, the plot indicates that the regular UKF
and the constrained UKF will drift after long time tracking,
especially the constrained UKF, which is quite sensitive to
defective sensor measurements (seen between Sample Index
2100 and 2150) while the constrained UKF with periodic
state vector resetting and the constrained forward-backward
statistical linearized sigma-point Kalman Smoother with pe-
riodic state vector resetting perform much more stably since
their estimates between two different gait cycles are relatively
independent. The difference between the results of these two
methods are negligible.

Outputs were collected from the constrained forward-
backward statistical linearized sigma-point Kalman Smoother
with periodic state vector resetting and input into a rigid body
to render 3D reconstruction of thigh and leg rotation (Fig. 4),
from where L was calculated.
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Fig. 3: Estimation of Joint Configuration During Walking.
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Fig. 4: Motion Reconstruction of Key Walking Phases.
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Three different models were used to train and test the step
length estimation algorithm, intra-subject model (each sub-
ject has a separate set of parameters), inter-subject model
(all the subjects share the same parameters) and intra-cluster
model where subjects were assigned into a set of groups
based on their step length using K-Means Clustering method
and a and b were trained within individual clusters. The
cross-validation method was adopted to evaluate the system
performance. Fig. 5 shows the step length estimation error
by using 30% of the data for training and 70% for testing
and both the intra-subject model and intra-clustered model
(with more than 3 clusters) give almost 96% accuracy. Note
that on average, each subject has 30 steps with both sensor
measurements and step length ground truth.

4. CONCLUSION

This paper introduced and demonstrated the new concept of
activity-specific motion tracking protocols and introduced a
trunk-thigh-leg kinematic chain to model walking that can
be directly extended to track other activities. The designed
tracking algorithm shows very stable performance for ex-
tended time period tracking and achieves nearly 96% accu-
racy for step length estimation exceeding the performance of
prior work [9].
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