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ABSTRACT

A support vector machine (SVM) regularized with the Pair-
wise Elastic Net (PEN) penalty is used to automatically se-
lect a sparse set of brain voxel clusters based on the fMRI
responses to two stimuli classes. This requires solving the
PEN-SVM quadratic program. We show how to design the
PEN regularization to encode, in a graph-based fashion, the
pairwise similarity structure of the voxel fMRI responses and
how to control the spatial locality of the encoding using a
voxel searchlight. The voxel similarity encoding is reflected
in the sparse structure of the weights of trained PEN-SVM
and these weights automatically select a sparse set of voxel
clusters. We empirically demonstrate the effectiveness of the
approach using a real-world, multi-subject fMRI dataset.

Index Terms— Support Vector Machine, Pairwise Elastic
Net, fMRI, Sparsity, Feature Selection

1. INTRODUCTION

The fMRI voxel selection problem requires selecting the sub-
set of brain voxels, based on measured fMRI responses, that
jointly discriminate between two stimuli. Traditionally this
has been done by spatial smoothing and mass thresholding of
a univariate statistic across voxels [1]. Alternatives include
hypothesis testings on voxel clusters [2], and thresholding a
statistic in a transformed domain (e.g. wavelet) [3, 4]. How-
ever, these methods sacrifice spatial resolution since averag-
ing or clustering voxels hides fine patterns in the data.

Multivariate analysis holds the promise of more sophisti-
cated selection mechanisms since it allows, for example, dis-
tributed patterns of activation to be captured that might be
otherwise missed by univariate tests [5, 6, 7, 8, 9, 10]. A
novel, recent approach selects voxels using tree-based spatial
regularization of a univariate statistic [11, 12]. This achieves
spatial precision and smoothness but uses a complex regular-
ization method.

An alternative approach uses labeled training data to tune
a pattern classifier. The optimized classifier weights are then
used to select the informative voxels [9, 13]. However, this is
not without pitfalls. First, the weights may require threshold-
ing and hence the selection of a threshold parameter. Con-
sequently, voxel selection is not “automatic”. Second, the

weights may not reflect expected properties of the informa-
tive voxels, e.g., spatial smoothness, spatial clustering, etc.,
since standard machine learning methods are not necessarily
informed by these desired characteristics. The first issue leads
to the idea that classifier weights should be sparse, thus ensur-
ing automatic feature selection (no threshold). This, however,
exacerbates the second problem as sparsity is achieved by se-
lecting a weight pattern that is sufficient for classification but
not reflective of the overall pattern of informative voxels [10].

This has led to a variety of recent work addressing these
issues. To ensure spatial locality of the selected voxels one
can use a two phase approach. First, run a multivariate analy-
sis on a set of searchlights (spherical masked regions) [14], to
test if the searchlight contains informative data. Then train
a classifier on the preselected searchlight voxels. A vari-
ant of this two-stage framework is to train classifiers on sev-
eral predefined masks, and then aggregate the classifiers us-
ing boosting [15, 16]. This is faster but assumes detailed prior
knowledge to select the predefined masks. An alternative is
a one step approach in which one constrains or regularizes
the classifier during training to attain desired weight charac-
teristics. For example, [17] used AdaBoost to train classi-
fiers with “rich features” (features involving the values of sev-
eral adjacent voxels) to capture spatial structure in the data.
This yielded superior performance but selected “rich features”
rather than discriminating voxels. The method of [18], also
based on boosting, uses voxels as base classifiers and favors
adding base classifiers (voxels) that are spatially contiguous
to voxels already selected in the boosted classifier.

Recently, there has been interest in using support vector
machine (SVM) [19] methods to capture multivariate rela-
tionships in MRI and fMRI data [9, 13, 20]. However, without
regularization the SVM weights need not exhibit desired spa-
tial characteristics across voxels. To address this [20] consid-
ers various forms of quadratic regularization based on Lapla-
cian operators that encode spatial and anatomical consistency,
e.g., voxel-to-voxel proximities.

The focus of this paper is on using a trained regularized
SVM to automatically select brain voxels (features) based on
measured fMRI responses to two classes of stimuli. What is
distinctive about our approach is that we regularize the SVM
with the Pairwise Elastic Net (PEN) regularization penalty.
This leads to what we call the PEN-SVM quadratic program.
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The PEN regularization encodes, in a graph-based fashion,
the pairwise similarity structure of the voxel fMRI responses.
The spatial locality of this encoding can be controlled using
a searchlight. This principled similarity encoding is then re-
flected in the structure of the trained PEN-SVM. Since the
PEN penalty seeks similarity modulated weight sparsity, the
trained PEN-SVM weights automatically select a sparse set
of voxel clusters.

The remainder of the paper is organized thus: the PEN-
SVM is presented in §3 and principled, graph-based construc-
tion of the penalty matrix P is detailed in §3.1. Experimental
results on fMRI data are given in §4 and we conclude in §5.

2. PRELIMINARIES

Given a set of m example-label pairs, {xi, yi}mi=1, with xi ∈
Rn and yi ∈ {±1}, an SVM seeks (w, b) to minimize the
regularized hinge-loss [19]:

argmin(w,b)
∑m
i=1

[
1− yi(wTxi + b)

]
+
+ J(w), (1)

where [z]+ , max{z, 0} is the positive part of z ∈ R and for
the standard SVM J(w) = λ‖w‖22. We will call this ridge-
SVM. In additional we consider:

J(w) =



λ‖w‖1 lasso-SVM

λ1‖w‖1 + λ2‖w‖22 EN-SVM

λ1‖w‖1 + λ2w
TΛw SEN-SVM

λ|w|TP|w| PEN-SVM

. (2)

Here |w| ∈ Rn with |w|i = |wi|, and Λ,P ∈ Rn×n are sym-
metric, positive semidefinite. The lasso-SVM is a linear pro-
gram (LP) and the other SVMs are quadratic programs (QP).
In all cases, the parameter λ is selected using cross validation
to maximize training data classification accuracy.

The lasso-SVM was considered in [21, 22, 23]: the `1
penalty is responsible for producing a sparse weight vector,
and is therefore appropriate for automatic feature selection.
The elastic net SVM (EN-SVM) was first proposed in [24]
where it was called the doubly regularized support vector ma-
chine (DrSVM). It attempts to balance the clustering property
of ridge with the sparsity of lasso. The structured elastic net
SVM (SEN-SVM), [25], is also a form of double regulariza-
tion where the Λ matrix encodes graph structure. The PEN
penalty was first introduced for linear regression [26], where
it was shown to encompass ridge, lasso, and elastic net. More-
over, PEN allows one to customize the sparsity relationship
between any two features.

3. PEN-SVM

In [26], the authors proved that the PEN penalty |w|TP|w|
is convex if and only the matrix P is psd with nonnegative-
valued entries. Additionally, various constructions for P were

offered ranging from correlation-based to group-based. The
key to designing an “appropriate” P is [normalized] similar-
ity: when features i and j are similar, we want pij to be small,
and vice versa. The extreme cases are

|w|T I|w| = ‖w‖22 (3)

|w|T (11T )|w| = ‖w‖21 , (4)

which lead to a ridge penalty (3) and a squared lasso penalty
(4). A ridge approach implicitly groups all features as indi-
cated by the small (i.e., zero) off-diagonal elements in (3). In
contrast, a lasso penalty is intended to accomplish sparse fea-
ture selection. It hence assumes that all features are pairwise
dissimilar and sets the off-diagonal elements in (4) equal to
1. Note that the PEN penalty forms a `1-squared/`2 tradeoff
rather than an `1/`2 tradeoff.

Assuming P is psd and nonnegative-valued, the PEN-
SVM is a convex quadratic program. To see this, note that
|w|TP|w| = minv�|w| v

TPv. Thus, we attain the PEN-
SVM by solving the QP:

minimize 1Tu + vTPv

subject to ui ≥ 1−wT (yi · xi)− yib
ui ≥ 0

vj ≥ wj
vj ≥ −wj .

(5)

The unknowns are u ∈ Rm, v ∈ Rn, w ∈ Rn, and b ∈ R.
The QP (5) can be solved, for example, using cvx [27, 28].

3.1. Graph-based regularization

We now outline a new automatic construction of the matrix
P using a graph-based approach. Let A = [aij ] = [a1 |
· · · | an ] ∈ {0, 1}n×n be a symmetric adjacency matrix of
an n-node graph. Hence aij = aji = 1 if nodes i and j are
linked, and 0 otherwise. We also impose aii = 0, i.e., no
self-links. The degree of node i is di =

∑
j aij . It follows

that di = 1Tai = aTi ai ∈ {0, 1, . . . , n−1} and d = A1.
Lastly, we set D = diag(d) and let L = D−A be the graph
Laplacian [29]. Necessarily, 1 is an eigenvector of L with
corresponding eigenvalue of zero.

We now construct P = [pij ] as follows. Let B = 11T −
A+D = 11T +L. Then set C = Bα, some α ∈ {1, 2, . . .}.
Finally let pij = cij/

√
ciicjj .

Note that B is a nonnegative-valued psd matrix so C is
also nonnegative-valued psd. The third step is a diagonal nor-
malization to have P fit the mold of an auto-correlation ma-
trix [30]. Thus, P is psd and nonnegative-valued, and so the
resulting penalty function will be convex.

Since L1 = 0, it follows that

Bα = (11T )α + Lα = nα−111T + Lα . (6)
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Fig. 1. Penalty surfaces resulting from 3-node graphs using
construction in §3.1 (best seen in color).

For α = 1, we have

cα=1
ij =

{
1 + di i = j

1− aij i 6= j
. (7)

So the off-diagonal elements are 0 when nodes i and j are
connected, and 1 when disconnected. For α = 2:

cα=2
ij =

{
n+ di + d2i i = j

n− (di + dj)aij + aTi aj i 6= j
. (8)

The quantity aTi aj is a count of how many nodes are con-
nected to both node i and node j. With aij indicating whether
nodes i and j are connected, we see that there is a balancing
act taking place within cij (i 6= j). Suppose that di + dj > 0.
It follows that cij is largest when nodes i and j are not con-
nected but share many one-link connections. Similarly, when

nodes i and j are connected and do not share many one-link
connections, cij is smallest. Thus, cij possesses limited prop-
agation information (one-hop and two-hop) connecting nodes
i and j. Certainly, if nodes i and j do not share common con-
nections and are not themselves connected, then cij = n. On
the other hand, when nodes i and j are maximally connected
in the one-hop and two-hop sense, i.e., di = dj = n−1 =
aTi aj + 1, then cij = 0.

We can summarize the above analysis as follows: when
nodes i and j are connected, or “similar”, we expect cij to
be small. Conversely, when there is a lack of connection, we
expect cij to be large. Recall that small [large] off-diagonal
elements lead to a ridge [lasso] penalty. Therefore, we expect
P to possess the encoded `21/`2 tradeoff. The parameter α
encodes the propagation (α hops).

We can also ask what P will look like as α→∞. First
we note that the largest magnitude eigenvalue of B is n. This
is because (i) B is a nonnegative matrix and (ii) 1, an eigen-
vector with eigenvalue n, is nonnegative-valued [31]. Note
that P is invariant to a scaling of C, so we can consider
n−αC = n−αBα = n−111T + n−αLα. If the largest eigen-
value of L, λ, is less than n, then n−αC → n−111T and
P → 11T because λαn−α → 0. The only other scenario is
that B has k+1 eigenvectors V = [ 1√

n
1 | v1 | · · · | vk] with

eigenvalue n,1 whereby n−αC→ VVT . We then normalize
to obtain P. As a final note, when the maximum degree of
the graph is less than n/2, then the maximum eigenvalue of
L will be less than n (Gershgorin Circle Theorem), implying
P→ 11T as α→∞.

Figure 1 exhibits all possible 3-node graphs and the re-
sulting penalty surfaces using the construction presented in
§3.1. When there are no links present, a lasso surface is gen-
erated (`1 ball). Similarly, a clique yields a ridge surface (`2
ball). This will always be the case, i.e., A = 0 ⇒ `1-ball
and A = 11T − I⇒ `2-ball. When there is a single connec-
tion (1↔2), the 12-plane has a ridge-like cross section while
the 13- and 23-planes have a lasso-like cross section. Lastly,
with two links present (1↔ 2 and 1↔ 3), the 23-plane has
a lasso-like cross section while the 12- and 13-planes have a
lasso-like cross section.

4. EXPERIMENTAL RESULTS

Functional MRI data were collected from 10 subjects par-
ticipating a block-design visualization experiment [32]. In
each run, a subject was shown images belonging to a certain
class—each class appearing once—for 16 TRs followed by 10
TRs of rest. The different image categories were (1) female-
face, (2) male-face, (3) monkey, (4) house, (5) chair, (6) shoe,
and (7) dog. To create an example, we took the time aver-
age of each voxel response over a 16 TR window, offset by 6
seconds to account for hemodynamic response. With 8 runs,

1This occurs, for example, when two or more nodes have maximal degree.
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SVM Sparsity Training Acc. Test Acc.

ridge 5963 80/80 74/80
lasso 29 80/80 71/80
EN 243 80/80 75/80
SEN 194 80/80 75/80
PEN 49 80/80 74/80

Table 1. Face-versus-house results from training on the first
4 runs and testing on the remaining 4 runs.

this yielded 560 labeled examples (10 subjects · 8 runs/subject
· 7 examples/run). We then extracted the female-face and
house examples from Talairach-aligned Ventral Temporal cor-
tex (VT). This provided 160 examples (80 face + 80 house) of
dimension 5994 (2997 voxels per hemisphere of VT). Then,
we trained binary SVM classifiers on the first four runs and
tested on the last four runs. Regularization parameters were
selected to optimize training accuracy and then sparsity.

For both SEN-SVM and PEN-SVM we first constructed a
1/0 adjacency matrix by setting aij = 1 if (i) voxels i and j
reside in the same hemisphere and (ii) voxel i is in voxel j’s
searchlight [14]. For a given voxel, we considered spherical
searchlight of radius 3, leading to a 1.56%-sparse symmetric,
adjacency matrix. We used α = 2 for PEN-SVM.

Table 1 features the sparsity2 and accuracy results. Ad-
ditionally, the weight vectors are graphically overlaid in Fig-
ure 2. As only sign information is used to classify, each (w, b)
pair was renormalized to have ‖w‖2 = 1.

In terms of classification accuracy, there is no compelling
reason to deviate from the standard ridge-SVM. This is not
surprising given the small TR-count and large voxel-count
[33]. The drawback of ridge-SVM, however, is poor fea-
ture selection. With the inclusion of an `1 (`21) penalty, the
number of non-zero weights decreases to nearly 4.1% for
EN-SVM, 3.2% for SEN-SVM, and less than 1% for both
lasso-SVM and PEN-SVM. The distribution of the non-zero
weights for EN-SVM are sparse but “speckled”. SEN-SVM
possesses a sparsity advantage over EN-SVM and is also less
speckled. Whereas lasso-SVM provides the sparsest array
of weights, there is no local clustering—only single voxels
unto themselves. Like SEN-SVM, PEN-SVM provides a
spatially-grouped and competitively-sparse weight vector.

5. CONCLUSION

We introduced the Pairwise Elastic Net Support Vector Ma-
chine. This adds PEN regularization to the hinge loss result-
ing in a quadratic program. The PEN penalty requires a ma-
trix P with O(n2) degrees of freedom. We proposed a prin-
cipled construction for P based on voxel response similar-

2Given the size of the problem and the precision for which a solution was
deemed acceptable, we took sparsity to mean the number of weights with
magnitude less than 10−6.

SVM Coronal Axial Sagittal

ridge

lasso

EN

SEN

PEN

Fig. 2. Face-versus-house weight vectors for various SVMs
(yellow [red] indicates a larger [smaller] magnitude).

ity that can be spatially modulated by a searchlight window.
We also indicated how to incorporate a priori graph structure.
Several questions remain. First, for a large number of fea-
tures, employing a general purpose QP-solver is inefficient.
An efficient direct method for solving the PEN-SVM would
be preferred. Other avenues of investigation include alterna-
tive constructions for the PEN penalty matrix and the regular-
ization path of the PEN-SVM [34].
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