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ABSTRACT

Segmentation of medical image based on the modeling and
estimation of the tissue intensity probability density functions
via Gaussian mixture model (GMM) has recently received
great attention. However, Gaussian distribution is unbounded
and symmetrical around its mean. This study presents a new
bounded asymmetric mixture model for analyzing both uni-
variate and multivariate data. The advantage of the proposed
model is that it has the flexibility to fit different shapes of
observed data such as non-Gaussian, non-symmetric, and
bounded support data. Another advantage is that each com-
ponent of the proposed model has the ability to model the ob-
served data with different bounded support regions, which is
suitable for application on image segmentation. Our method
is intuitively appealing, simple, and easy to implement. We
also propose a new method to estimate the model parameters
in order to minimize the higher bound on the data negative
log-likelihood function. Numerical experiments are presented
where the proposed model is tested in various images from
simulated to real 3D medical ones.

Index Terms— Medical image segmentation, non-Gaussian,
non-symmetric, bounded support regions.

1. INTRODUCTION

Automatic segmentation plays an important role in the field
of medical imaging. During the last decades, there has been
a growing research interest in Bayesian technique based on
the modeling of the probability density function of the data
via finite mixture model. Among the algorithms based on
Bayesian technique, Gaussian mixture model (GMM) [1, 2]
is a well-known method used in most applications. Many re-
searchers have used it to study a number of key problems in
the area of image segmentation [3, 4].

In order to improve the robustness of the algorithm, the
Student’s-t mixture model (SMM) has been proposed in [5–
7]. Compared to the GMM, each component of SMM has
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one more parameter called the degrees of freedom (v). When
v tends to infinity, the Student’s-t distribution approaches the
Gaussian distribution. Another way to model data with dif-
ferent shapes is to use the generalized Gaussian mixture mod-
els (GGMM) [8, 9]. Compared to GMM, each component of
GGMM has one more parameter (λ). This parameter controls
the tails of the distribution. However, the major disadvantage
of GGMM is that, this model assumes that the dimensions of
the observed data are independent. Therefore, it is not suit-
able for analyzing correlated data.

In many practical problems, we observe that the inten-
sity distribution of each tissue type in an image need not be
symmetric. In contrast, the Gaussian distribution, Student’s-t
distribution, and generalized Gaussian distribution are sym-
metrical around their mean, and these curves have a single
peak. To overcome these problems, a model has been pro-
posed in [10, 11]. However, these methods are only applied
for univariate data. In [12], an asymmetrical distribution was
proposed to solve the problem of non-Gaussian multivariate
data. One drawback of all the above-mentioned mixture mod-
els is that their distributions are unbounded with support range
(−∞, +∞). We observe in many real applications, the ob-
served data are always in the bounded support regions.

Motivated by the aforementioned observations, we intro-
duce in this paper a new bounded asymmetric mixture model
for analyzing both univariate and multivariate data. Our ap-
proach differs from those discussed above by the following
statements. Firstly, a new bounded asymmetric distribution,
which has the flexibility to fit different shapes of observed
data such as non-Gaussian, non-symmetric, and bounded sup-
port data, is proposed in this paper. The advantage of this
distribution is that it is simple, and intuitively appealing. Sec-
ondly, each component of our model has the ability to model
the observed data with different bounded support regions. Fi-
nally, to estimate the parameters of the proposed model, we
propose a new method in order to minimize the higher bound
on the data negative log-likelihood function. We demonstrate
through extensive simulations that the proposed model is su-
perior to other methods based on the modeling of the proba-
bility density function of the data via finite mixture model.

The remainder of this paper is organized as follows:
section 2 describes the proposed method in detail; section
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3 presents the parameter estimation; section 4 sets out the
experimental results; and section 5 presents our conclusions.

2. PROPOSED METHOD

Let us consider the problem of estimating the posterior prob-
ability of xi belonging to label Ωj . The finite mixture [1, 2]
assumes the density function at a pixel xi is given by:

f(xi|Θ) =

K∑
j=1

πjp(xi|Ωj) (1)

where πj is the prior probability that pixel xi is in label Ωj .
Each distribution p(xi|Ωj) is called a component of the mix-
ture. Note that, p(xi|Ωj) can be any kind of distribution.
As shown in (1), the main goal of statistical modeling is to
establish a model that can best describe the statistical prop-
erties of the underlying source. The existing mixture mod-
els [1, 2, 5, 7–9] have relied on p(xi|Ωj) for modeling the
underlying distributions. However, the distributions of all
above-mentioned mixture models are unbounded with sup-
port range (−∞, +∞). In many real applications, the ob-
served data are always in the bounded support regions. For
example, in the area of signal processing, the power spec-
trum is semi-bounded. In the area of image computer vi-
sion, the pixels are usually not symmetric, and in the limited
range. Also, in the area of MRI segmentation, each tissue la-
bel is in different bounded support regions. Motivated by the
aforementioned observations, we propose a bounded asym-
metric mixture model (BAMM) with bounded support region,
non-Gaussian, non-symmetric distribution. The advantage of
the proposed model is that it is simple, intuitively appealing,
and has the ability to analyze both univariate and multivariate
data.

First, for each label Ωj , we define ∂Ωj
to be the bounded

support region in RD, and the indicator function as:

H(xi|Ωj) =

{
1 IF xi ∈ ∂Ωj

0 Otherwise
(2)

We define a multivariate Gaussian distribution Φ(xi|µjk,Σjk)
as follow:

Φ(xi|µjk,Σjk) =
1

(2π)
D/2

1

|Σjk|1/2

exp

{
−1

2
(xi − µjk)

T
Σ−1

jk (xi − µjk)

} (3)

In (3), i=(1,2,...,N ), j=(1,2,...,K), and k=(1,2,...,Kj). The
D-dimensional vector µjk is the mean. The DxD matrix Σjk

is the covariance, and |Σjk| denotes the determinant of Σjk.
With the indicator function H(xi|Ωj) in (2) and the distribu-
tion Φ(xi|µjk,Σjk) in (3), we define a bounded multivariate
Gaussian distribution Ψ(xi|µjk,Σjk):

Ψ(xi|µjk,Σjk) =
Φ(xi|µjk,Σjk)H(xi|Ωj)∫

∂Ωj
Φ(x|µjk,Σjk)dx

(4)

In (4),
∫
∂Ωj

Φ(x|µjk,Σjk)dx is the normalization constant,

and it identified as the share of Φ(xi|µjk,Σjk) that belongs
to the support region ∂Ωj

. The idea to define the distribu-
tion Ψ(xi|µjk,Σjk) in (5) is based on a fact that the observed
data of an image is digitalized and have bounded support. We
want to assign Ψ(xi|µjk,Σjk) equal to Φ(xi|µjk,Σjk) in the
support region ∂Ωj

, and zero outside.
Next, in order to fit different shapes of observed data such

as non-Gaussian, non-symmetric, and bounded support data,
we define a new D-dimensional bounded asymmetric distri-
bution p(xi|Ωj) in this paper. Each component density in
our model is modeled with multiple D-dimensional bounded
asymmetric distribution Ψ(xi|µjk,Σjk). The proposed distri-
bution p(xi|Ωj) is defined as:

p(xi|Ωj) =

Kj∑
k=1

ηjkΨ(xi|µjk,Σjk) (5)

where, Kj is the number of the bounded multivariate Gaus-
sian distribution that is used to model the label Ωj . And ηjk
is called the weighting factor that satisfies the following con-
straints:

ηjk ≥ 0 and

Kj∑
k=1

ηjk = 1 (6)

The idea to define the distribution in (7) is based on a fact
that non-Gaussian, non-symmetric, and bounded support data
can be approximated by multiple bounded multivariate Gaus-
sian distributions. It is worth mentioning that the proposed
distribution in (7) will always satisfy the conditions of the
probability density [1]:

p(xi|Ωj) ≥ 0 and

∞∫
−∞

Kj∑
k=1

ηjkΨ(x|µjk,Σjk)dx = 1 (7)

Given the distribution p(xi|Ωj) in (5), the log-likelihood
function is written in the form.

L(Θ) =

N∑
i=1

log

K∑
j=1

πj

Kj∑
k=1

ηjk
Φ(xi|µjk,Σjk)H(xi|Ωj)∫

∂Ωj
Φ(x|µjk,Σjk)dx

(8)
From (8), we can see that each component of the proposed
model has the ability to model the observed data with different
bounded support regions ∂Ωj

. We can define any shape of ∂Ωj

based on the prior knowledge about the observed data.

3. PARAMETER LEARNING

Thus far, the discussion has focused on p(xi|Ωj) in Eq.(7) for
modeling the underlying distributions. In order to determine
the label Ωj to which the pixel xi should be assigned, we need
to adjust the parameters Θ = {πj , ηjk, µjk,Σjk} in order to
maximize the likelihood function in (8). Since the logarithm
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is a monotonically increasing function, it is more convenient
to consider the negative logarithm of the likelihood function
[6, 14], as an error function

J(Θ) = −L(Θ) = −
N∑
i=1

log

K∑
j=1

πjp(xi|Ωj) (9)

Therefore, maximizing the likelihood L(Θ) in (8) is then
equivalent to minimizing J(Θ) in (9). In order to minimize
the error function J(Θ), we define two variables z(t)

ij and

y
(t)
ijk. The variables z(t)

ij is defined as:

z
(t)
ij =

πj
Kj∑
k

ηjkΨ(xi|µjk,Σjk)

K∑
m=1

πm
Km∑
k

ηmkΨ(xi|µmk,Σmk)

(10)

and the value of y(t)
ijk is defined as:

y
(t)
ijk =

ηjkΨ(xi|µjk,Σjk)
Kj∑
m
ηjmΨ(xi|µjm,Σjm)

(11)

Because the values z(t)
ij in Eq.(10), and y(t)

ijk in Eq.(11) always

satisfy the conditions
∑K

j=1 z
(t)
ij = 1 and

∑Kj

k=1 y
(t)
ijk = 1, we

can apply Jensen’s inequality [14] in the form log(
∑K

j=1 z
(t)
ij s) ≥∑K

j=1 z
(t)
ij log(s) and log(

∑Kj

k=1 y
(t)
ijks) ≥

∑Kj

k=1 y
(t)
ijk log(s)

to the error function in (9) to give

J(Θ) ≤ −
N∑
i=1

K∑
j=1

z
(t)
ij {log πj +

Kj∑
k=1

y
(t)
ijk{

log ηjk + log Ψ(xi|µjk,Σjk)}}
(12)

Then, minimizing the negative log-likelihood function in
Eq.(12), is equivalent to minimizing the error function E(Θ):

E(Θ) =

−
N∑
i=1

K∑
j=1

z
(t)
ij {log πj +

Kj∑
k=1

y
(t)
ijk{log ηjk + log H(xi|Ωj)

+ log Φ(xi|µjk,Σjk)− log

∫
∂Ωj

Φ(x|µjk,Σjk)dx}}

(13)
To minimize this function, we consider the derivation of the
error functionE(Θ) with the means µjk, and Σ−1

jk at the (t+1)
iteration step. After some manipulation [13], we have the es-
timates of µjk and Σjk at the (t+1) step

µ
(t+1)
jk =

N∑
i=1

z
(t)
ij y

(t)
ijkxi

N∑
i=1

z
(t)
ij y

(t)
ijk

− 1

PjkM

M∑
m=1

(µ
(t)
jk − smjk)H(smjk|Ωj)

(14)

Σ
(t+1)
jk =

N∑
i=1

z
(t)
ij y

(t)
ijk(xi − µjk)(xi − µjk)

T

N∑
i=1

z
(t)
ij y

(t)
ijk

−

M∑
m

((smjk − µ(t)
jk )(smjk − µ(t)

jk )
T
− Σ

(t)
jk )H(smjk|Ωj)

PjkM
(15)

where, smjk ∼ Φ(x|µ(t)
jk ,Σ

(t)
jk ) denotes the random vector

that is drawn from the probability distribution Φ(x|µ(t)
jk ,Σ

(t)
jk ).

Pjk ≈ 1
M

∑M
m=1 H(smjk|Ωj). And M is the number of ran-

dom vectors smjk. We use M = 106 for the experiments in
this work. The next step is to update the estimate of the prior
probability πj and the weighting factor ηjk. The constraint∑K

j=1 πj = 1 and
∑Kj

k=1 ηjk = 1 enables

πj =
1

N

N∑
i=1

z
(t)
ij and ηjk =

N∑
i=1

z
(t)
ij y

(t)
ijk

N∑
i=1

z
(t)
ij

Kj∑
m=1

y
(t)
ijm

(16)

So far, the discussion has focused on estimating Θ =
{πj , ηjk, µjk,Σjk} of the model. In the next section, we
will demonstrate the robustness and accuracy of the proposed
model, as compared with other approaches.

4. EXPERIMENTS

In this section, the performance of BAMM is compared to
the GMM [1, 2], SMM [5, 7], GGMM [8, 9], EMS [10], and
SPM [11].

Fig. 1. The first experiment, (a): Noisy image, (b): Ground
truth distributions, (c): The estimated distributions of BAMM
without bounded support regions ∂Ωj

∈ (−∞,+∞) and
Kj=1, (d): The estimated distributions of BAMM without
bounded support regions ∂Ωj

∈ (−∞,+∞) and Kj=3, (e):
The estimated distributions of BAMM with ∂Ωj ∈ (0, 1)
and Kj=1, (f): The estimated distributions of BAMM with
∂Ωj
∈ (0, 1) and Kj=3.

In the first experiment, in order to explain in the details
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why the performance of the proposed distribution p(xi|Ωj)
with bounded support regions is better than the regular dis-
tribution, we show a noisy image in Fig. 1(a). The ground
truth distributions is shown in Fig. 1(b). In Fig. 1(c), we
show the performance of with Kj = 1, and without support
range [∂Ωj ∈ (−∞,+∞)]. Note that, in this case, BAMM
will become the GMM model. As shown in Fig. 1(c), the dis-
tribution without bounded support range is very poor in this
situation. In Fig. 1(d), we use the same conditions as Fig.
1(c). The only difference between them is that we increase
the number of the multivariate Gaussian distribution to model
each label. In Fig. 1(d), we set Kj = 3. As you can see, com-
pared with Fig. 1(c), the estimated distributions of BAMM in
Fig. 1(d) is improved very much. However, a closer look
at Fig. 1(d) (in the range 0 <xi < 0.1 or 0.9 <xi < 1)
clearly shows that it cannot estimate the ground truth distri-
bution. In Fig. 1(e) the result of the proposed model by using
the bounded support regions [∂Ωj ∈ (0, 1)] with Kj = 1, is
shown. A visual inspection of the result indicates that Fig.
1(e) yields a better result compared to the two previous results
in Fig. 1(c) and (d). However, some small portions of pixels
have been estimated. As shown in Fig. 1(e), the BAMM by
using the bounded support regions [∂Ωj ∈ (0, 1)] with Kj =
3, can better estimate the observed data in comparison to the
three previous results.

Fig. 2. The second experiment (IBSR18, 3D), (a): orig-
inal image, (b): Histogram of the image, (c): GMM
(MCR=31.01%), (d): SMM (MCR=31.52%), (e): GGMM
(MCR=29.81%), (f): BAMM (MCR=13.36%).

In second experiment, another dataset (IBSR18), as
shown in Fig. 2(a), is used. In this experiment, we choose
the bounded support regions for GM and WM as [GM:
∂Ω2 ∈ (a, b), WM: ∂Ω3 ∈ (a, b)]. And the bounded sup-
port region for CSF is chosen as CSF: ∂Ω1 ∈ (a, c). Where
c denote the pixel value at position of 10% on the histogram
image. The chosen bounded support region for CSF is based
on a fact that tissue label CSF is a very small amount com-
pared to GM and WM. As shown in Fig. 2(b), the observed
data are always in the bounded support regions. The in-
tensity distribution of each label type of the data does not
exhibit exactly a Gaussian shape and are not symmetric. The

GMM, SMM, and GGMM methods are very poor in this situ-
ation with MCR=31.01%, MCR=31.52% and MCR=29.81%,
respectively. As evident from the results, on average, the
proposed method outperforms other methods.

Fig. 3. The third experiment (IBSR02, index=45), (a):
Original image, (b) Ground truth image, (c): GMM
(MCR=24.42%), (d): SMM (MCR=22.44%), (e): GGMM
(MCR=23.49%), (f): EMS (MCR=19.36%), (g): SPM
(MCR=22.48%), (h): BAMM (MCR=17.46%).

In the next experiment, real dataset (IBSR02, 256x256x
128) is used. Fig. 3(a) shows one example slice (index=45)
of this 3D image. The objective is to segment the 3D im-
age into three labels: CSF, GM and WM. The image shown
in Fig. 3(b) is the ground truth of the original image. Fig.
3(c) to Fig. 3(h) show the results obtained by implementing
GMM, SMM, GGMM, EPS, SPM, and BAMM. A low con-
trast between the GM and the CSF increases the complexity
of the image. The segmentation accuracy of GMM in Fig.
3(c) is quite poor. SMM, and GGMM in Fig. 3(d)-(e) slightly
improve the segmentation result. EMS (default settings: Bias-
order=4, MRF=yes, 3D), and SPM (default settings:SPM8)
methods in Fig. 3(f)-(g) yield a better result with a lower
MCR compared to the two previous methods. We rank in the
top among these methods with the lowest MCR.

5. RELATION TO PRIOR WORK AND
CONCLUSIONS

We introduce a new bounded asymmetric distribution, which
has the flexibility to fit different shapes of observed data such
as non-Gaussian, non-symmetric, and bounded support data.
Our model can be used for analyzing both univariate and mul-
tivariate data. Each component of the proposed model has
the ability to model the observed data with different bounded
support regions. The proposed distribution has the flexibil-
ity to fit different shapes of observed data. We also present
a new way to estimate the model parameters in order to min-
imize the higher bound on the data negative log-likelihood
function. The proposed method is compared to other finite
mixture models for medical image segmentation, and demon-
strates a competitive performance in terms of quality.
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