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ABSTRACT 
 
We propose a method for the analysis of brain structural 
data to simultaneously identify differences in position, 
orientation and size (i.e. pose), and in shape of multiple 
brain regions between young people with, and without, a 
depressive disorder. Different structures in both 
hemispheres of the brain of depressed and control 
participants were segmented and corresponding points on 
the surface of each structure were extracted. Coordinates of 
these surface points were used to obtain shape variations, 
and parameters of similarity transformations between brain 
structures across subjects were used to generate pose 
variations. Since these surface points and similarity 
transformations form Lie groups, a logarithmic mapping of 
members of the Lie groups was performed to transform 
them to a linear tangent space. Then, Independent 
Component Analysis (ICA) was used to obtain the 
independent sources of pose and shape variations on Lie 
group members, and their corresponding modulation 
profiles. A method for ordering the independent sources is 
proposed. The top ordered sources were used to detect pose 
and shape differences between the two groups, and confirm 
that even in their first depressive episode, the brains of 
depressed adolescents differ structurally from the brains of 
their nondepressed age- and sex-matched peers. 
 

Index Terms— Independent Component Analysis, Lie 
groups, depression, multi-object analysis 
 

1. INTRODUCTION 
 
Multi-object analysis of brain structures may allow for a 
sensitive analysis of shape and position, orientation and size 
(i.e. pose) differences across multiple brain regions between 
different groups of people. Multi-object methods were 
originally designed to characterize the shape of a population 
of geometric entities [1-4], and have since been applied to 
discriminate between healthy and diseased populations (e.g., 
pediatric autism; [5]) using brain data. In our previous study 
[6], we provide the first use of a multi-object statistical pose 

and shape model using Principal Component Analysis 
(PCA), to analyze brain temporal and limbic lobe structures 
in adolescent/young-adult individuals experiencing their 
first episode of Major Depressive Disorder (MDD). Pose 
variations for each anatomical structure in the brain are 
given by the parameters of a similarity transformation, and 
shape variations are given by the coordinates of the 
corresponding surface points on boundaries of each 
structure. Since these similarity transformations and surface 
points form Lie groups, a logarithmic mapping of members 
of the Lie groups is first performed to transform them to a 
linear tangent space. Then, Principal Component Analysis 
(PCA) is used to obtain the orthonormal subspace of pose 
and shape variations on Lie group members. However, 
orthonormality of the variations is an assumption of PCA 
that does not always hold [7], and it would be better to use a 
method that does not rely on such assumptions, like 
Independent Component Analysis (ICA).  
Here, we perform ICA on Lie groups for multi-object 
statistical pose and shape analysis of the same imaging data 
as in our previous study [6]. Brain structures in the 
temporal-lobe and limbic regions including hippocampus, 
amygdala, parahippocampal gyri, putamen, and the superior, 
inferior and middle temporal gyri in both hemispheres were 
segmented using the LPBA40/SPM5 atlas [8] in Montreal 
Neurological Institute (MNI) space after application of the 
DARTEL group-wise registration algorithm [9]. Pose and 
shape sources are obtained from surface points using ICA 
on Lie groups. Differences between the brain structures of 
depressed and healthy control participants were investigated 
using independent pose and shape sources. To the best of 
our knowledge, this is the first report of using ICA on Lie 
groups for multi-object analysis. Furthermore, this study 
provides new knowledge about the anatomical differences 
between individuals experiencing their first episode of 
depression, and normal individuals. This provides important 
information about the disorder’s initial etiology. 
 

2. METHODS 
 

To quantify pose and shape variations in brain structures 
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across two groups of subjects (e.g., patients with MDD and 
healthy controls), multi-object statistical analysis using ICA 
and Lie algebra is used. Corresponding surface points of 
multiple brain structures of all subjects, 
ܸ ൌ ሼݒ,ሽୀଵ..ே,ୀଵ.., were used to generate a multi-object 
pose and shape model [6], where ݒ, consists of all surface 
points of the lth anatomical structure of subject n, L=12 is 
the number of structures (six anatomical structures in each 
hemisphere), and N=45 is the number of instances in the 
training set. As a result, independent sources of pose (ݏ) 
and shape (ݏ௦), and the corresponding mixing coefficients 
for each instance, ܽ and ܽ௦, are obtained. Pose sources for 
each structure are given by the parameters of a similarity 
transformation, and shape sources are given by the 
coordinates of the corresponding surface points on the 
boundary of each structure. 

 
3.1. Identification of independent components 
 
ICA assumes a generative model X=AS where a source 
matrix S=[s1, s2, …, sM]T  is combined with the mixing-
coefficients matrix A (also called the  ICA loading-
parameters matrix) to generate the observations X=[x1, x2, 
…, xN]T [10]. The jth row, sj, of S is the jth independent 
component (also called independent source), and M is the 
number of independent components (ICs). N is the number 
of participants and xi is a vector of observations. The ICA 
method involves finding U=WX, where W= A-1 is called the 
unmixing matrix and U is the estimate of the source matrix 
S. Here, independent components were found using the 
Infomax algorithm [11], which is based on minimization of 
mutual information of components. In this algorithm, the 
output entropy of a neural network is adaptively maximized 
with as many outputs as the number of ICs to be estimated. 
Prior to ICA decomposition, the number of ICs was 
estimated using Akaike’s Information Criterion (AIC) [12], 
which is an information-theoretic technique for model-order 
selection, and the data was centered and whitened. 
Unlike PCA, which results in an ordering of principal 
components based on their variance, ICA does not result in 
any ordering of ICs. To select independent components that 
do not describe noise effects or undesired pose and shape 
models, a sorting method is proposed. First, a histogram is 
computed for the mixing coefficients that correspond to 
each IC. These coefficients represent the projection of pose 
and shape variations of all subjects onto each IC. Second, 
entropies of the histograms are calculated. Finally, ICs are 
sorted to have minimum entropy. 
 
3.2. ICA on Lie groups for multi-object analysis 
 
Similarity transformations (rigid+scale) transform a 3D 
point, x, by	ܶሺxሻ ൌ Rxݏ  d, where R is a rotation matrix, d 
is a translation vector, and ݏ is a scale factor. Given the 
dense correspondences established across the training set, 
the mean shape (μሻ and similarity transformations from the 

mean shape to the instances (T,) are found, for each 
anatomical structure, using generalized Procrustes analysis 
[13]. T, represents the transformation from the ݈th 
anatomical structure in the mean shape to the corresponding 
one in the ݊th instance. These transformations form a Lie 
group where analysis in Euclidean space is not applicable. 
However, logarithmic mapping of members of the Lie group 
transforms them to a linear tangent space, where 
conventional statistical analysis can be applied. Each 
transformation T, can be expressed as a vector with seven 

variables, ൫ݎ௫, ,௬ݎ ,௭ݎ ,ݔ ,ݕ ,ݖ ݈൯

, where ݈ ൌ ,௫ݎሻ, ሺݏሺ݈݃	 ,௬ݎ  ௭ሻݎ

is the rotation axis with angle ߠ ൌ ඥݎ௫ଶ  ௬ଶݎ   ௭ଶ, andݎ
ሺݔ, ,ݕ  ሻ is the translation vector. In order to construct anݖ
independent basis representing all transformations, each 
transformation is normalized using the mean transformation 
for each anatomical structure, M, and mapped to the tangent 
space: ݔ,

 ൌ log൫M
ିଵT,൯ [14], where the superscript “p” 

indicates the variables belonging to pose space as opposed 
to shape variables with the superscript “s”. The 
transformation vectors are concatenated for each instance to 

form a 7ܮ ൈ 1 vector: ݔ
 ൌ ቂݔ,ଵ

 ்
,ݔ…

 ்
ቃ
்
 and the matrix 

of all transformations for instances is created:	X ൌ

ଵݔൣ
 ேݔ	…

൧
்
. Using ICA, independent sources and the 

mixing coefficients are found: U ൌ Aܨ். In this 
equation, A ൌ ൣܽଵ

, … , ܽ୫୧୬ሺ,ேିଵሻ
 ൧ is the mixing 

coefficient matrix, ܵ ൌ ൣsଵ
, … , s୫୧୬ሺ,ேିଵሻ

 ൧
,୫୧୬ሺ,ேିଵሻ

 is 

the pose source matrix, and s
s are independent sources that 

are sorted based on the approach described in Section 3.1.  
Since surface points on the boundary of each anatomical 
structure behave locally as members of a Lie group, the 
same approach can be applied to extract shape sources ሺݏ

௦ሻ 
and corresponding mixing coefficients, ܽ

௦ [15]. Using the 
mean shape of each anatomical structure across all training 
set instances, μ, surface points of each structure of each 
instance are normalized and mapped to the tangent space: 
,ݑ
௦ ൌ logஜ൫ݒ,൯, defined as: 

logஜ൫ݒ,൯ ൌ 2 arcsin ൬
1
2
ݒ‖ െ ൰‖ߤ

ݒ െ ሻݒߤሺߤ
ݒ‖ െ ‖ሻݒߤሺߤ

 

where v and μ are the vectorized ݒ, and μ, generated  by 
concatenating the 3D positions of ݒ,, and μ. 
The transformation vectors are concatenated for each 

instance: ݔ௦ ൌ ,ଵݔൣ
௦ ் ,ݔ…

௦ ்൧
்
 and the matrix of all 

transformations for instances is created:	X௦ ൌ ሾݔଵ
௦ ேݔ	…

௦ ሿ். 
Using ICA, independent sources and the corresponding 
mixing coefficients are found: X௦ ൌ A௦ܵ௦். In this equation, 
ܵ௦ ൌ ሾݏଵ

௦, … , ேିଵݏ
௦ ሿ is the shape feature matrix, and s

௦s are 
independent sources that are sorted based on the explained 
approach. A௦ ൌ ሾܽଵ

௦, … , ܽேିଵ
௦ ሿ is the corresponding mixing 

coefficient matrix.  
 
 3.3. Relative importance of pose and shape 
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To investigate the differences between individuals with and 
without depression, a two-sample t-test on the pose and 
shape mixing coefficients was performed. Two criteria were 
used to select the pose and shape sources of interest. First, 
the pose and shape mixing coefficients had to differ 
significantly (p<0.05) between the two groups. Second, the 
significant sources had to be among the first five sorted 
source vectors, as those sources have a higher likelihood of 
capturing pose and shape variations between the two groups, 
and are less affected by the inherent variations of anatomical 
structures across all subjects. Using the significant sources 
and the corresponding mean mixing coefficients of each 
group, the mean transformation pose vector for each group 
for each significant source was back reconstructed. Finally, 
the difference between the poses of the brain structures in 
the two groups was calculated. A similar approach was used 
for finding differences between the groups in the shapes of 
brain structures. The mean mixing coefficients of each 
group were used with the significant shape source to 
generate a mean shape for each group. Differences between 
the two mean shapes were assessed by computing the 
Euclidean distance between the two mean shapes. 
 

3. MATERIALS 
 
3.1. Participants  
 
Eleven depressed individuals (mean age: 18, range: 16-21, 2 
male) and fourteen healthy control participants (age: 18, no 
male) were recruited through referrals from community 
mental health clinics and through advertisement in the 
Kingston community. All subjects in the depressed group 
met Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV-TR; American Psychiatric Association, 2000) 
criteria for a current episode of major depression based on a 
structured diagnostic interview administered by an advanced 
doctoral student in clinical psychology. This study was 
cleared by the Queen's University Health Sciences Research 
Ethics Board, and written informed consent was obtained 
from all participants. The MRI data were acquired using a 
3.0 Tesla Siemens Trio MRI scanner with a 12-channel head 
coil in the MRI facility at Queen's University, Kingston, 
Canada. A whole-brain 3D MPRAGE T1-weighted 
anatomical image was acquired for each participant (voxel 
resolution of 1.0 × 1.0 × 1.0 mm3, flip angle α = 9°, 
TR = 1760 ms, and TE = 2.6 ms). 
 
3.2. Preprocessing  
 
The structural MRI data were preprocessed using Statistical 
Parametric Mapping software (SPM8, Wellcome 
Department of Cognitive Neurology, London, UK).  Each 
voxel of each individual structural (T1-weighted) MRI was 
assigned a probability of being Grey Matter (GM), White 
Matter (WM) and Cerebral Spinal Fluid (CSF), using the 
automated segmentation processes in SPM.  The GM maps 

were registered using the DARTEL method, which achieves 
accurate inter-subject registration of images [9].  The 
DARTEL procedure uses the GM and WM maps to create a 
new template, and calculates the deformation fields required 
to map the GM maps from each participant to the template 
space. The mapped GM and WM segments were then 
spatially normalized to stereotaxic MNI space. A segmented 
LPBA40/SPM5 atlas [8] in MNI space was used to segment 
multiple objects in the brain. Seven brain structures from 
both hemispheres of the brain were selected. These included 
the hippocampus and amygdala which were considered 
together, parahippocampal gyrus, putamen, and superior, 
inferior and middle temporal gyri. Using the DARTEL 
algorithm, the atlas was registered to each individual’s 
structural MRI, and deformation fields for such registrations 
were created [9]. Surface points of each of the selected brain 
structures were warped to each individual’s brain volume, 
using the deformation fields. 
 

4. RESULTS AND DISCUSSION 
 
The goal of our multi-object analysis was to investigate the 
difference in brain structures between young participants in 
their first episode of MDD and healthy controls, by 
examining the statistical differences between brain pose and 
shape sources in the two groups. Using AIC the number of 
pose sources was estimated to be 8, but this criterion did not 
converge on estimation of shape sources, so 20 was chosen 
as the number of shape sources. To validate this choice, the 
analysis was also repeated for values between 8 to 24 
components, for which the differences were negligible. 
A two-sample t-test on the mixing coefficients of the first 
five sorted pose and shape sources (ܣ and ܣ௦) was 
performed. The second mode of pose variation (p = 0.0309), 
and the first and forth modes of shape variation (p = 0.0346 
and p = 0.0051) were found to differ significantly between 
the two groups. Using these significant features, the pose 
and shape differences of the anatomical structures between 
the two groups were calculated. Fig. 1(a) and Fig. 1 (b) 
show these differences in mm for the most significant 
modes of pose and shape. Brain structures have been plotted 
apart from each other, to make the differences more visible. 
A color has been assigned for the value of the difference in 
mm for each voxel of the brain structures. The color 
smoothly varies from black through red, orange, yellow and 
white, to show the minimum through maximum difference 
values. These significant pose and shape differences 
between the two groups, are consistent with (although more 
marked than) those identified in our previous analysis of the 
same data [6], and also with a previous study of early-onset 
depression [16]. Fig. 1(c) shows the corresponding 
maximum absolute difference in mm for the most significant 
sources across different anatomical structures in the brain. 
All structures (except putamen) have almost the same 
amount of difference. It is also clear that shape differences 
are much greater than pose differences.  
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(a) 

(b) 

(c) 

Fig. 1. Differences in mm for the significant mode of pose (a) and 
shape (b) of brain structures between the two groups, along with 
the max differences in each structure of the brain for pose and 
shape (c) sources. Second mode of pose (p = 0.0309), and the forth 
mode of shape (p = 0.0051) were the most significant sources 
between the two groups. L and R stand for left and right, and Pu: 
Putamen, Hi: Hippocampus, PHG: parahippocampal gyrus, ITG: 
inferior temporal gyrus, MTG: Middle temporal gyrus, STG: 
superior temporal gyrus. 

 
6. CONCLUSIONS 

 
Using ICA on Lie groups for multi-object pose and shape 
analysis, independent sources of pose and shape variations 
were obtained. A method for ordering the independent 
components was proposed. Pose and shape data, which are 
usually disregarded, were extracted from young adults in a 

first episode of MDD and from healthy controls, and 
differed significantly between these two groups. 
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