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ABSTRACT 
Myocardium rotation and torsion are important 
indicators of the cardiac function. Currently, tagged 
Magnetic Resonance Imaging (tMRI) sequences are 
analyzed to estimate these parameters. Unfortunately, 
tMRI is not widely used in clinical practice because it 
prolongs the scanning time and requires sophisticated 
analysis software. In this work, we present a method 
for estimating the myocardium rotation from standard 
cine MRI sequences. The method is based on 
identifying special features, i.e. landmarks, of the 
intensity pattern around the myocardium borders at 
each timeframe. Each set of landmarks is then encoded 
using a string of characters that can be matched across 
the different timeframes. String alignment technique is 
used to match the characters and thus determine the 
inter-frame motion of each landmark. Preliminary 
results using dataset of three patients (apical, mid, and 
basal slices) indicate the potential of the method to 
estimate the myocardium rotation especially at late 
timeframes where tMRI fails due to tag fading. 
 

Index Terms— Myocardium, rotation, MRI, string 
alignment 

 
1. INTRODUCTION 

Steady State Free Precision (SSFP) imaging 
technique is a standard image acquisition protocol in 
Magnetic Resonance Imaging (MRI)  [1]. The 
technique provides high quality cine sequences of the 
heart that can be used to assess many cardiac 
functional parameters. This includes ejection fraction; 
systolic, diastolic and stroke volumes; ventricular 
volume and mass; and wall thickness and 
thickening  [2]. Other functional parameters such as 
myocardium rotation and torsion are important 
indicators of myocardium infarction  [3]. Nevertheless, 
estimation of these parameters from SSFP sequences 
using conventional tracking methods, such as optical 
flow, is usually hindered by many obstacles. For 
example, the lack of significant tissue texture in SSFP 
images limits the sensitivity of the tracking algorithm. 
In addition, the rapid myocardium motion combined 

with low temporal resolution of the imaging sequence 
can lead to failure of the tracking algorithm  [4].  
 
Currently, tagged MRI (tMRI) imaging sequences are 
considered the golden reference for estimating the 
myocardium rotation and torsion  [5]. Nevertheless, 
tMRI is not common in the practice of cardiac imaging 
due to some technical limitations. First, acquisition of 
tMRI sequences significantly increases the time, and 
hence the cost, of the patient scans. Secondly, fading 
of the image tags limits the accuracy and the reliability 
of most analysis techniques especially at late cardiac 
phases.  
 
In this work, we present method for estimating the 
myocardium rotation from standard SSFP image 
sequences. The method is based on identifying special 
features, i.e. landmarks, of the intensity pattern around 
the myocardium borders at each timeframe. Each set of 
landmarks is then encoded using a string of characters 
that can be matched across the different timeframes. 
String alignment technique is used to match the 
characters and thus determine the inter-frame motion 
of each landmark  [6]. 
 

2. THEORY & METHODS 
Five main steps are required to estimate the 

myocardium rotation. The input of the proposed 
method is a segmented sequence of cardiac SSFP 
images. As will be shown below, the segmentation is 
not crucial to the performance of the proposed 
methods because only rough delineation of the 
myocardium borders is needed. In this work, active 
contour (ACM) based segmentation method is used to 
extract the myocardium contours at each 
timeframe  [6].  
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Figure 1. Intensity profile for two different timeframes 
(left). The peaks and valleys of the blue profile are indicated 
by the red and green ‘x’ on the myocardium contour (right). 
 
2.1 Intensity Profiles of the Myocardium Contours 

At timeframe, t, let Ct be a myocardium contour that 
comprises a set of ܰ points: { ܲ

௧, ݊ = 1:ܰ}. Centered 
at each contour point, a line segment of length, L, is 
drawn perpendicular to the contour and the summation 
of the image intensity along this line is calculated. This 
results in a signal of length N that represents the 
intensity profile along the myocardium contour. 
Usually, N is set to 360 and L is set to 10 pixels. The 
resulting profile is then normalized to vary from 0 to 1. 
It is worth noting that because the summation is taken 
over a relatively long line, the exact location of the 
segmented contour points, does not significantly 
impact the resulting intensity profiles. Figure 1 shows 
the intensity profile for two consecutive timeframes. 
The y- and x-axes are the normalized intensity and the 
angle in degrees of each contour point.  
 
2.2. Identifying Contour Landmarks 

In order to estimate the rotational motion of the 
myocardium, some landmarks on the intensity profile 
(obtained from the previous step) have to be identified. 
In this work, the local maxima and minima are taken 
as the desired landmarks. In order to avoid noise 
effect, a low pass averaging filter (of size 1x5) is 
applied to the intensity profile prior to determining the 
landmarks. Then, the profile is searched for a change 
in the slope to locate the local maxima and minima. 
This results in a number of landmarks, Kt, that is 
variable from one timeframe to another. The image on 
the right in Fig. 1 shows the contour and the location 
of the peaks and valleys landmarks detected by the 
algorithm. 
 
2.3. Encoding of the Landmarks 

To capture the intrinsic properties of each 
landmark, we propose a scheme that encodes the 
magnitude and width of each landmark into a string 
over a finite alphabet. First, the normalized magnitude 
(ranging from 0 to 1) is quantized into 5 levels, as 
shown in Figure 2. For profile landmarks representing 

local maxima, we map these levels to five characters, 
denoted by a, b, c, d, and e. For profile landmarks 
representing local minima, we map the same levels to 
a different set of characters, denoted by s, t, u, v, and 
w. Secondly, the non-landmark locations on the 
intensity profiles are given the label: l. That is, we 
have an alphabet Σ of 11 characters to which the levels 
are mapped. For example, Figure 2 shows a part of a 
landmark profile including two maxima and one 
minimum with magnitudes 0.9, 0.7, and 0.1, 
respectively. The spacing between the first peak and 
the minimum is 5 units, while the distance between the 
minimum and the second maximum is 3 units. The 
string S that encodes this profile is ELLLLLSLLLD. 

 
For string alignment purpose, we define a distance 
measure between the different characters in Σ. For two 
characters s and s’, we define the distance d(s,s’) as the 
difference between their corresponding numerical 
values. For example, the distance between the pairs of 
characters (a,b), (a,e), (a,l), (a,s), and (s,v) are equal to 
1, 4, 11, 18, and 3 respectively. 
 
2.4. String Alignment 

String alignment is a method for comparing two 
strings to identify regions of similarity and differences. 
Let S[1..n] and R[1..m] denote two string S and R of 
lengths n and m, respectively. In our model S and R 
represent two myocardium contours (Ct and Ct+1) at 
two different time frames t and t+1. We define three 
operations working on characters of the strings: 1) 
Match, where character a matches b in the alignment; 
2) Insertion, where a character a is inserted in S or R; 
and 3) Deletion, where a character a is deleted from S 
or R. Each of these operations has a numerical cost 
defined as follows: The cost of matching a to b is the 
distance d(a, b). The insertion and deletion cost is set 
to a fixed value δ. The optimal global alignment is to   
arrange the characters of S and R from left to right 
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using this set of operations such that the total cost of 
all operations is minimal. (It is also equivalent to say 
that we optimally transform S into R using this set of 
operations). Figure 3 shows an example of two strings 
and an optimal alignment of them.  

 
The minimum alignment cost can be computed using 

the dynamic programming scheme [8]. Let A[i, j] 
denote the minimum cost of aligning the prefix S[1..i] 
to the prefix R[1..j], we use the following recurrence to 
computes A[i, j]. 

 

A[i,j] = ݉݅݊ቐ
݅]ܣ − 1, ݆ − 1] + ݀(ܵ[݅],ܴ[݆])

݅]ܣ − 1, ݆] + ߜ
,݅]ܣ ݆ − 1] + ߜ

 

 
and A[0, j]=jxδ and A[i, 0]=ixδ. Putting i=n and j=m, 

A[n,m] is the score of an optimal alignment of S and R. 
This recurrence can be easily computed by establishing 
a matrix A and filling it either row- or column-wise. 
This yields an algorithm with O(nm) time and space. 
To report an optimal alignment as in Figure 3, a trace-
back procedure is applied to recover the involved 
operations [8]. 
 
2.5. Estimation of the Myocardium Rotation 

The string alignment step yields a map that links a 
number of landmarks, M, in one contour, ܲ

௧ , to the 
matching points  in the other contour,	 ܲ௧ାଵ, where 
m=1:M. Assuming a rigid body motion, the rotation 
angle, θ, of the myocardium between the two 
timeframes can be estimated by simultaneously 
solving the following system of equations for all 
values of m, 

௧ݔ cos(ߠ) + ௧ݕ sin(ߠ) =  ௧ାଵݔ
௧ݔ sin(ߠ) − ௧ݕ cos(ߠ) =  ௧ାଵݕ

The solution of the above equation yields two 
values: cos(ߠ) and sin(ߠ). The latter is used to 
estimate θ because the sine function is linear and thus 
more sensitive at the small values of the myocardium 
rotation (typically few degrees).  
 

2.6. Test and Validation 
The dataset used for testing and validation is 

composed of tMRI and SSFP image sequences for five 
patients. Both sequences capture the same cross 
sections of each patient (apical, mid cavity, and basal 
slices). The tMRI sequences contain 13-15 timeframe 
while the SSFP sequences contain 20-25 timeframe. 
The tMRI images are analyzed to estimate the 
myocardium rotation at each timeframe using the 
HARP tracking technique  [7]. The SSFP images are 
analyzed using the proposed methods. For comparison 
purpose, the rotation angles from the SSFP are 
interpolated and truncated to calculate the rotation 
angles at exactly the same timeframe point given by 
the tMRI sequence. The correlation between the 
resulting angles of both techniques for each patient 
(for the apical, mid, and basal slices) is calculated to 
test the accuracy of the proposed methods. 

 

 

 

 
Figure 4. Myocardium rotational angle vs. timeframes 
estimated by the proposed method (blue) and HARP (red) 
for apical, mid-cavity, and basal slices of one patient. 
(r=0.92, 0.93, 0.36). 

 
3. RESULTS AND DISCUSSION 

Considering the angular rotation between the consecutive 
timeframes, the correlation coefficient, r, between the values 
estimated by the HARP and the proposed technique was 
found as listed in Table 1. As can be shown in the table, the 
correlation is lowest in the basal slices. This can be due to 
the vigorous motion of the (loose) papillary muscles in the 
basal slices. Taken the first timeframe as a reference, the 
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overall rotation angle of the myocardium can be calculated 
by accumulating the individual rotation angles between the 
consecutive timeframes. Figure 4 shows the overall 
myocardium rotation for one patient at the apical, mid-
cavity and basal slices. The red and blue curves respectively 
represent the angles estimated using the proposed method 
and the HARP technique. The correlation coefficient 
between each pair of curves in this figure is 0.92, 0.93 and 
0.36. It is worth noting that, the low correlation in the basal 
slice is due to erroneous values at the beginning of the 
cardiac cycles that propagate through the timeframes. 

 
 Table 1. Myocardium rotation angle bet 

 Apex Mid Base 
Patient1 0.83 0.55 0.71 
Patient2 0.81 0.46 0.48 
Patient3 0.63 0.79 0.42 

 
Figure 5 shows a scatter plot of the rotation angles estimated 
from the tagged MRI using HARP and from the cine SSFP 
using the proposed method. The overall correlation 
coefficient is 0.59 with p-value less than 0.01, which means 
significant correlation between the two techniques.  

 

 
Figure 5. Scatter plot of the rotation angles estimated from 
tagged MRI and from the cine SSFP (r=0.59, p-value<0.01). 
 

4. CONCLUSION 
In this work, we have presented a method for 
estimating myocardium rotation from standard SSFP 
MRI sequences. The new method is fast and does not 
require sophisticated processing with the preliminary 
results confirm its potential to estimate the torsion. The 
significance of this method is to allow the estimation 
of functional parameters that currently cannot be 
estimated from standard SSFP sequences. 
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