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ABSTRACT

We propose a novel collaborative denoising scheme for
multi-subject fMRI data. The scheme assumes that sub-
jects experience a common, synchronous stimulus and uses
the across-subject shared response structure to jointly denoise
each subject’s fMRI response along the spatial or voxel do-
main. Denoising is accomplished by learning subject-specfic
orthonormal bases that yield sparse representations in a com-
mon transform domain. We provide empirical results using a
real-world, multi-subject fMRI dataset.

Index Terms— fMRI, Procrustes problems, signal de-
noising, principal axes

1. INTRODUCTION

A crucial step in the processing chain of fMRI data analysis
is signal denoising. Denoising fMRI data is typically done (i)
within-subject and either (ii) along the temporal dimension, or
(iii) by local spatial smoothing. That is, for a fixed voxel (or
set of voxels) we filter, smooth, detrend, despike, etc. [1]. In
this paper we present a multi-subject, collaborative approach
for denoising fMRI along the spatial domain. Rather than re-
lying on local, isotropic spatial smoothing, our approach ex-
ploits shared between-subject temporal synchrony to denoise
the data in a transformed spatial domain.

In [2], the authors observed that a common, synchronous
stimulus, such as a movie, leads to increased inter-subject
correlation (ISC). This suggests that we can move beyond
within-subject methodologies and leverage between-subject
commonality to jointly learn from each subject’s fMRI re-
ponse data. A successful example resulting from this line
of reasoning is hyperalignment: a subject-specific, high-
dimensional, orthogonal spatial mapping of fMRI data into
a common abstract space [3]. The orthogonal constraints
of hyperalignment (indirectly) lead to 1SC maximization [4],
and thus exploit shared between-subject structure. Within the
hyperalignment common space, the performance of between-
subject classification experiments matches or exceeds within-
subject benchmarks, suggesting that the common space has
extracted useful information shared across subjects.

Rather than use between-subject commonality for align-
ment purposes, here we explore whether denoising can also be
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accomplished. We begin by anatomically aligning the fMRI
data across subjects. This alignment gives a common voxel
coordinate system across subjects and a common voxel in-
dexing and visualization mechanism. Moreover, a sparse set
of voxels for one subject, defines the same sparse set of voxels
for all subjects. Anatomical alignment has limitations, but it is
often the default method for multi-subject analysis. We then
ask whether the anatomically-aligned fMRI data can be de-
noised by exploiting hyperalignment. This leads to a collabo-
rative denoising technique that uses part of the multi-subject
fMRI data as training data to learn subject-specific orthogonal
transformations. These transformations are then calibrated to
align with the principal axes [S]. Whereas [5] used the data-
induced principal axes as a visualization technique, similar to
multidimensional scaling [6], we use these axes for signal de-
noising. Once in the transformed space, we apply established
shrinkage methods along each dimension, which effectively
denoises the data.

The remainder of the paper is organized as follows: we
introduce our denoising method in §2 and offer a modeling
approach of the problem, providing probabilistic insight in
§3. 84 presents experimental results on multisubject fMRI
data, and we conclude in §5.

2. PRINCIPAL AXES DENOISING

2.1. Hyperalignment

We begin with fMRI data collected for m subjects from
a common, synchronous stimulus (e.g., viewing the same
movie). The data are recorded in m matrices, X1.,,, € R**™,
where ¢ is the number of TRs and n is the number of vox-
els. Note that the TRs index rows and the voxels index the
columns. Given the synchronous stimulus, we assume row
correspondence.

Hyperalignment constructs linear maps Ry.,, € R™*"
from voxel-space to a common space. This is accomplished
by solving the multi-set orthogonal Procrustes problem:

Ri.,, = argmin Zi<j||XiQi -X;Q1F . D
Q1:m€O0(n)

where O(n) is the set of n x n orthogonal matrices. Orthog-
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onality ensures temporal isometry, i.e.,
XX = (XR)(XRy)T = X, XT.

The implication is that the temporal geometry associated with
the stimulus is invariant within a subject. For solving (1), the
reader is referred to [7, 8, 9].

2.2. Learning a basis

In traditional denoising, we project the data x onto a prede-
fined orthonormal (ON) basis, yielding coordinates X. The
basis is often specifically chosen to yield a sparse data repre-
sentation, i.e., many entries of X are zero (or nearly zero). For
example, to denoise audio we might project onto a Fourier ba-
sis and for images we might project onto a wavelet basis. Mo-
tivated by the assumed sparsity of X, after mapping into the
transform domain we denoise by shrinking the coefficients x
toward zero. We then apply the inverse transform to obtain a
denoised signal.

Under hyperalignment, since R; is orthogonal an ON
basis is being learnt for each subject. This learning process
attempts to match subjects’ fMRI responses through their
subject-specific transform representation. That is, under the
hypothesis that X;R; ~ X;R;, the optimization problem
of (1) seeks the R, that minimizes the sum of all pairwise
distances | X;R; — X ;R;||2.

Once Rj.,, is evaluated we may be tempted to denoise
subject ¢ via R; and the process described above. However,
there is no justification for assuming a sparse representation
of subject ¢’s data after projecting onto the ON basis vectors
in R;. We also want sparsity in the transformed domain.

The unitary invariance of the Frobenius norm means that
there is a family of solutions for (1). If R4.,, is a global so-
lution then so is {R 1Ry, ..., R Ro} for any Ry € O(n).
Consider a solution {R Ry, ...,R;,Ro}. We can achieve
sparsity by using Ry to seek a sparse centroid or consensus
matrix Y = L 3" X, R;Ry. The following identity is the
key to this goal [7]:

D IXRR-X;RRo[[F=m) _ [X;RiRo— Y. (2)

i<j i=1

So instead of considering pairwise matchings, we consider
how the transformed data relates to the centroid (“total dis-
tance versus variance” [10]). Suppose Y € R!*™ has rank
p < min(t, n)—a property independent of Ry. We can use
Ry to ensure that the p left singular vectors of Y are posi-
tioned in the first p columns of Y. Specifically, let Y =
UXI? = UX be the full SVD of Y with U € R**? housing
the p left singular vectors. This provides the sparsest repre-
sentation of the centroid in terms of orthogonal vectors. The
left singular vectors are also referred to as the principal axes.

To achieve the desired form for Y, we start from the orig-
inal centroid Y = L 3™ X;R;. Let the full SVD of Y be

Algorithm 1 Basis Discovery
1: Input: X;.,, € RP*"
2: Output: ON bases R1.;,
3 X X, (1 1117)
4 Riyy «— argming,, com) Zi<j||XiQi — XJQJHg
5: Y +— L3 XGR,
6: [UX V] +— SVD(Y)
7. R; £ R,V

UZVT. If we set Ry = V € O(n), we obtain

1 & 1 &
Y=— ;XZRZ-RO = (m ;XiRZ) R, (3
— YR, = (USVT)V = US| )

leading to the desired form described above.

Before proceeding to the denoising aspect we address
mean invariance. When we think of Fourier denoising, we
typically focus on the AC components (frequency > 0) and
preserve the DC component (frequency = 0). We can apply
the same methodology here as well. Before solving (1) we
first subtract the temporal mean, %Xil, from each column of
X; (z = 1,...,n). Subsequent operations will transform the
data in a space orthogonal to the averaging vector 1. Algo-
rithm 1 presents the basis discovery for X.,,,. Here Xi is X;
with the mean projected out.

2.3. Denoising

Algorithm 1 learns a basis from training data X;.,,, € R*",
The next step is to denoise new data Z.,,, € R**™ —both X;
and Z; are data from the i-th subject possessing column cor-
respondence, i.e. within-subject alignment. Adhering to mean
invariance, we focus on a filter for Z; = Z; (I-1117).

If we use a linear filter equipped with predefined weights
c € R™, then the denoised signal is Z;R,; diag{c}R7. This
is composed of the following steps: we first map the signal
into the transform domain (= ZiRi), multiply the k-th col-
umn by ¢; (= Z;R; diag{c}), and then apply the inverse
transform (= Z;R,; diag{c}RT).

Typically, we select each ¢;, € [0,1]; when ¢, = 1 there
is no denoising along the k-th principal axis, and when ¢;, =
0 there is full denoising along the k-th principal axis. The
Fourier basis is naturally ordered by the notion of frequency,
so that ¢ can be set to yield a low-pass filter, for example,
by setting ¢, = 1 when k < ko and O otherwise. In con-
trast, the ON bases Rj.,, are not assumed to possess any
type of ordering. Wavelet representations have a similar prop-
erty in that, within a scale, any ordering is valid. Thus, for
W, = Z,R; = [wi|w? || wl'], we consider adaptive

1009



Algorithm 2 Basis Denoising
1: Input: ON bases R1.,,, € O(n); noisy data Z1.,,, € R®*"
2: Output: denoised data lem
3 by £ 171

Z; & 7, —bT

w; £ 7R,

(note: W; = [w} | w? |-+ [wl'] )

fori: =1— mdo

»

for j =1—ndo

A

J : J
w; ¢— shrink(w)
10:  end for
11: end for

~ 1:
12: Z; < W,;RT

13: Zl M Zl + b;1

coefficients of the form [11]:

ck:max{l—(lv&cl)ﬁ,O} , Q)

where 7 > 0 is a threshold parameter and 8 > 0. Familiar
forms include hard thresholding (5 — +o0), soft threshold-
ing (8 = 1), and James-Stein shrinkage or empirical Wiener
attenuation (5 = 2). Algorithm 2 features the denoising
scheme. For flexibility, line 9 is left generic; shrinkage can
be accomplished with constant or adaptive weights.

3. AMODELING PERSPECTIVE

In [12], the authors revealed the emergence of two function
brain networks: extrinsic and intrinsic. The extrinsic network
is tied to the stimulus while the intrinsic network resembles
the default mode network [13]. Thus, under a common stim-
ulus extrinsic networks may exhibit common structure across
subjects, while the intrinsic networks remain isolated.

Suppose X, € R*™ is the noiseless, universal response
for a given stimulus and model the recorded responses as
X; = XoRlT + H;, where H; is a noise matrix that may
also include the effect of the intrinsic network. In the spirit
of hyperalignment, the R; denote isometric transformations
to account for alignment differences.

We use the “ © ” accent to denote random variables. For
two datasets ¢ and j, we make the assumption

E{hi(k,1)} =0 and E{h;(k,)h;(K',1)} =0, (6)

where h;(k,1) is the kl-th entry of matrix H;. It follows that

E{X;} = E{X,R! + H;} = X(R) (7
E{X7X;} = E{(X R} + I:Ii)T(XoRJT +H,)}
=R, X{XoR] . ®)

Note, however, that E{X7 X, } = R, X¥ X R7 +E{H”H,},
with E{IZIZTI:L} a quantity we assume no prior knowledge
about. Even when all of the latent R, ., are identity matrices,
the characteristics of ﬁi(k, 1) are still unknown.

Under the orthogonal constraint, it can be shown [4] that
(1) is equivalent to:
L tr (RZTXZTXJRJ) . (9)

i<jn

Ry, = argmax >
Q1:m€0(n)

Since the ISC between subject i and j is L tr(X7X;), the
above relationship indicates that hyperalignment is maxi-
mizing the ISC in the common space via the transformation
XTX,; = (X;R;)TX;R,. Additionally, in the form pro-
vided in (9), we observe that XiTXZ- is absent—the objective
does not consider intra-subject connectivity, and therefore
may be immune to intrinsic network effects [12]. Further-
more, we have E{RTX7X,R;} = X} X,, so the above
objective is not biased by the noise.

4. EXPERIMENTS

Talairach-aligned fMRI data from ten subjects were collected
as they watched the movie Raiders of the Lost Ark (1981)
and partook in a visual block-design experiment [14]. The
block-design experiment featured 7 categories of images: (1)
female-face, (2) male-face, (3) monkey-face, (4) dog-face, (5)
house, (6) chair, and (7) shoe. In each run, a subject was
shown all 7 image categories, with each category featured for
16 TRs followed by 10 TRs of rest (1 TR = 2 seconds). There
were 8 runs per subject.

In our experiments we focus on Ventral Temporal (VT)
cortex. We took the time average of all 16 TR windows where
images were displayed (offset by 2 TRs to account for hemo-
dynamic response). This produced a labeled dataset of 560
examples (10 subjects - 8 runs/subject - 7 examples/run) with
5994 features (2997 voxels per hemisphere of VT).

We investigated whether we can denoise the second half
of the movie by learning ON bases from the first half. In
particular, we look at the average ISC as we move from no
denoising to complete denoising. Recall that no denoising
means we leave the data untouched, while complete denois-
ing means that, for a given TR, each voxel is replaced by the
average response.

The ISC is a between-subject metric. Playing an adversar-
ial role, if we “denoise” each voxel time-series by replacing
it with same fixed signal, the average ISC will be 1 and there-
fore lead to erroneous conclusions about our denoising. Thus,
we also need a within-subject metric to ensure that we have
not lost signal information. To accomplish this, we also com-
puted the cross-validated within-subject classification (WSC)
accuracy on the 7-label dataset, using the same per-subject
filter coefficients used for the movie denoising (for classifi-
cation we used a one-versus-one v-SVM [15]). In this way,
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Fig. 1. Denoising: ISC vs WSC for 7-label data

if a large ISC is accompanied by chance within-subject accu-
racy (=1/7), we know that the denoising has removed crucial
information from the original signal and cannot be trusted.

Figures 1 and 2 feature the improvement in ISC using
the shrinkage of (5) for varying values of S. Each path is
parametrized by T as it increases from 0 to oo (effectively).
At 7 =0, there is no denoising as the filter coefficients are all
equal to 1. Similarly, when 7 — +o0 all of the filter coeffi-
cients are 0 and only the mean response survives. Thus, all
paths have the same starting (ending) points, irrespective of
B. Figure 1 keeps us honest by tracking the WSC accuracy of
the 7-label dataset; Figure 2 considers WSC accuracy of the
classification of face versus house.

When 8 = 0.2 the mean WSC accuracy for the 7-label
dataset is maintained while increasing the mean ISC from
0.02 £ 0.002 to 0.14 £ 0.01 —a 600% increase. For face
vs house WSC, the mean ISC increases to 0.21 4 0.01 with-
out loss of discriminative information. Starting at 7 = 0, the
WSC accuracy increases and then decreases. The increase in-
dicates that denoising is indeed improving the signal-to-noise
ratio. There is also a tradeoff between 8 and “dynamic range”
of ISC. For f3 large there is a larger peak in WSC accuracy
followed by relatively steep descent. For 3 small, the WSC

Alignment (B,7) WSC Acc.  BSC Acc.
Talairach — 42.68% 35.71%
(1.0,0.9) 44.82% 36.07%
Hvperalienment — 42.68% 45.71%
vberalig (1.0,09) 44.82%  48.93%

Table 1. Denoising on Talairach and hyperaligned data and 7-label
classification. Standard errors &~ 2%.
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Fig. 2. Denoising: ISC vs WSC for face-vs-house

remains high for a longer range of ISC, but WSC accuracy
does not increase as much.

Next, we looked at a specific value of (3, 7) and analysed
the effects of denoising for both Talairach and hyperalign-
ment. Although not discussed, denoising in hyperaligned
space actually involves fewer steps because we never leave
the common space. Table 1 provides WSC and Between
Subject Classification (BSC) accuracy for the 7-label classi-
fication before and after denoising. With (5,7) = (1.0,0.9)
accuracy improved, albeit by a small amount, for both align-
ment spaces. This is significant for between subject classifi-
cation under hyperalignment.

5. CONCLUSION

Traditional spatial averaging uses local isotropic filters to
spatially smooth each subject’s data. This improves the local
signal-to-noise ratio for each subject separately at the ex-
pense of spatial resolution. In contrast, here we exploited the
across-subject shared component of fMRI responses elicited
by a common (synchronous) stimulus. This was identified
via a hyperalignment training phase and then used to ap-
propriately pool the subjects’ data to permit collaborative
denoising. The resultant algorithms execute quickly, and
on real multi-subject fMRI data were able to improve inter-
subject correlation without reducing within subject classifi-
cation accuracy—an indication that noise was being removed
without detriment to the information present.
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