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ABSTRACT 

 
This work addresses the problem of dynamic MRI 
reconstruction from partially sampled K-space. When the 
frames of the dynamic MRI sequences are stacked as 
columns of a matrix, the resultant matrix is both sparse (in a 
transform domain) and rank-deficient. The dynamic MRI 
sequence is reconstructed by solving an optimization 
problem that minimizes a sum of sparsity and rank-
deficiency penalties subject to data constraints (K-space data 
acquisition model). In this work, we propose a non-convex 
optimization problem for dynamic MRI reconstruction 
where the sparsity penalty is an lp-norm and the rank-
deficiency penalty is the Schatten-q norm (0<p,q≤1). There 
is no algorithm to solve this combined lp-norm and Schatten-
q norm minimization problem; hence we derive a new 
algorithm based on the Majorization Minimization method. 
Our proposed method shows considerable improvement in 
reconstruction results over state-of-the-art techniques in 
dynamic MRI reconstruction. 
  

Index Terms— MRI, Sparsity, Rank-deficiency. 

1. INTRODUCTION 

In Magnetic Resonance Imaging (MRI) the data is acquired 
in the Fourier frequency domain which is traditionally called 
the ‘K-space’ in MRI literature. When the full K-space is 
sampled uniformly on a Cartesian grid, the reconstruction is 
trivial – applying an inverse FFT to produce the image. 
However sampling the full K-space on a uniform grid is time 
consuming and poses a problem for both static and dynamic 
MRI.  

In dynamic MRI, one is ideally interested in acquiring a 
sequence of images of high spatial and temporal resolution. 
Unfortunately one comes at the cost of other – high spatial 
resolution compromises the frame-rate and vice versa. One 
way to increase the temporal resolution without sacrificing 
the spatial resolution is to partially sample the K-space and 
use a smart reconstruction technique that exploits prior 
knowledge about the dynamic MRI sequence.  

Before discussing the reconstruction techniques for 
under-sampled data, we will briefly describe the dynamic 
MRI K-space data acquisition model. Let Xt denote the MR 
image frame at the tth instant and T the total number of 

frames. Let yt be the acquired K-space data for the tth frame. 
The problem is to recover all Xt’s (t=1…T) from the 
collected k-space data yt’s. The MR imaging equation for 
each frame is as follows, 

 where 1...t t ty RFx t Th= + =    (1) 

where F is the Fourier transform matrix/operator (2D or 3D 
as the case may be) which maps the image space to the k-
space, R is the under-sampling mask applied on the k-space, 
xt is the vector form of the MR image Xt to be recovered and 
ηt is the noise assumed to be distributed Normally. 
The data acquisition model (1) can be expressed as, 
Y RFX η= +      (2) 

where [ ]1 | ... | TY y y= , [ ]1 | ... | TX x x= , [ ]1 | ... | Th h h= and 

T is the total number of frames . 
The problem is to recover the dynamic MRI sequence X 

given the K-space samples Y. Since, the K-space is partially 
sampled the problem (2) is under-determined and therefore 
does not have a unique solution. To get a practical solution 
to (2), one needs to have a prior knowledge about X.  

In a dynamic MRI sequence the difference between 
frames arises from motion (heart beat) or from changes in 
concentration (cardiac perfusion). The motion/concentration 
change is typically concentrated only in certain areas of the 
cross section under study. Thus along the temporal direction 
of the sequence, (along rows of X), only certain areas 
(corresponding to motion/change in concentration) have 
major variations in pixel values while the rest of the areas 
have negligible variation.  

Under such an assumption on the dynamic MRI 
sequence, the signal X will be approximately sparse under 
several transforms –  
1. When the 1D Fourier transform is applied along the 

temporal direction [1], the resultant signal in the x-f1 
space will be approximately sparse since most areas 
show small variation in pixel values and will lead to 
Fourier transform coefficients near to zero; only the 
small areas where the variation is high will result in high 
valued coefficients. 

                                                 
1 The signal X is said to be in the x-t space, where x refers to 
spatial domain and t refers to temporal direction. When 1D Fourier 
transform is applied on X in the temporal direction, the resultant 
signal is in the x-f space where f refers to temporal frequency. 
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2. When temporal differencing is applied on X [2], the 
resultant difference signal is also approximately sparse 
since most of the areas with low time variations cancel 
each other (leading to zeroes after differencing) while 
only small areas showing motion/change in 
concentration correspond to high values in the resulting 
difference signal. 

3. When spatio-temporal differencing is applied on X [3], 
the resultant signal is also sparse. Spatio-temporal 
differencing additionally assumes that the images at 
each time instant are piece-wise smooth.  
There are a few papers [4, 5] that assume the signal X to 

be rank deficient. Since the columns of X (i.e. image frames) 
are correlated, the signal X can be expressed by very few 
temporal basis functions and hence it is approximately rank 
deficient.  

A new method called ‘k-t SLR’ [6] proposes 
minimization of a combination of rank-deficiency of the 
signal in the x-t space and its sparsity in Spatio-Temporal 
differencing domain. The following optimization problem is 
proposed, 

2

1 21
min ( )

q

q

s tF SX
Y RFX x Xl l- + Ñ Ä Ñ +

 
(3) 

where x is the vectorised version of X, s∇ is the finite 

differencing operator in the spatial domain, t∇ is the 

temporal differencing operator and λ1, λ2 are the Lagrange 

multipliers; .
F

is the Frobenius norm of the matrix, 
1

. is 

the l1-norm of the vector and .
q

q

S
is the Schatten-q norm of 

the matrix raised to the power q. 

Here 
2

F
Y RFX- is the data fidelity term, 

1
( )s t xÑ Ä Ñ is the convex sparsity penalty and the non-

convex Schatten-q norm 
q

q

S
X is the penalty on rank-

deficiency. The constants λ1 and λ2 control the relative 
importance of the sparsity and rank-deficiency penalties. 
The idea of combining sparsity with rank-deficiency for 
dynamic MRI reconstruction was first proposed in k-t SLR 
[6]. The k-t SLR method yields better results than other 
reconstruction techniques that rely only on sparsity or only 
on rank-deficiency but does not combine both.  

Following the success of k-t SLR a recent work 
proposed a variation of it [7]. The fundamental idea remains 
the same (combining sparsity with rank-deficiency) but it 
differs from k-t SLR in two aspects –  
1. Instead of assuming the signal to be sparse in the spatio-

temporal differencing domain, it was assumed to be 
sparse in the x-f space. 

2. Instead of using Schatten-q norm as the penalty on rank-
deficiency, a power factorization based method was 
used to account for rank-deficiency.  
In this paper, we adhere to the same fundamental 

assumption as in [6, 7]. For the sparsity penalty, we will 

assume that the signal X is sparse in the x-f space as in [1, 
7]. But instead of using the convex l1-norm as sparsity 
penalty as used in [1-3, 6, 7] we propose using the non-
convex lp-norm. We replace the convex l1-norm by the non-
convex lp -norm as the sparsity penalty because it has been 
shown in previous studies [8-10] to yield better MRI 
reconstruction results can be achieved thus. For the rank-
deficiency penalty we use the Schatten-q norm as used in 
[6]. Thus, we propose to reconstruct the dynamic MRI 
sequence X by solving the following optimization problem, 

2

1 1 2min
q

p qT T
DF p SX

Y RFX F X Xl l- + +    (4) 

Here 1
T

DF X transforms the signal X from the x-t space to the 

x-f space. The lp-norm is defined over the vectorised version 
of 1

T
DF X . The values of p and q lie between 0 and 1. 

Instead of imposing the Schatten-q norm on X as in (3) we 
define it on XT; this is a trivial change but will help us later 
to simplify the problem. 

Unfortunately there is no algorithm to solve (4). We 
derive an efficient algorithm to solve it based on the 
Majorization Minimization approach [11]. The derivation of 
the algorithm is given in the next section. In section 3, the 
experimental results are described. Finally the conclusions 
of the work are discussed in section 4. 

2. ALGORITHM DERIVATION 

The problem is to solve (4). Instead of solving it directly we 
will first simplify it. We replace the Schatten-q norm by its 

equivalent Ky-Fan norm ( / 2( )
q

q T q
S

U Tr U U= ) and 

substitute 1
T

DZ F X= . Using these substitutions (4) takes 

the simplified form, 
2 /2

1 1 2min ( )
p T q

D F pZ
Y RFZF Z Tr Z Zl l- + +   (5) 

Since / 2 /2
1 1 1( ) ( )

q

qT T T q T q
D D DS

F Z Tr Z F F Z Tr Z Z= = .  

Using the Kronecker product notation, the term 
2

1D F
Y RFZF- in (5) can be expressed as, 

2

1 2

T
Dy F RFz- Ä where ( ) and ( )z vec Z y vec Y= = , i.e. the 

oprator ‘vec’ converts a matrix to a vector by row/column 
concatenation.  

Using these substitutions, the simplified optimization 
problem that needs to be solved is, 

2 /2
1 22

min ( )
p T q
pz

y Az z Tr Z Zl l- + +
 

 (6) 

where 1
T
DA F RF= Ä and z = vec(Z). 

We solve this problem by the Majorization-
Minimization (MM) approach [11]. The generic MM 
algorithm is as follows, 

Let J(x) be the (scalar) function to be minimized 
1. Set iteration count k=0 and initialize x0. 
Repeat step 2-4 until a suitable stopping criterion is met. 
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2. Choose Gk(x) such that 
a. ( ) ( )kG x J x³ for all x. 

b. ( ) ( )k k kG x J x= . 

3. Set xk+1 as the minimizer for Gk(x). 
4. Set k=k+1, go to step 2. 

For our problem the function to be minimized is 
2 / 2

1 22
( ) ( )

p T q
p

J x y Ax x Tr X Xl l= - + +  

There is no closed form solution to J(x), it must be solved 
iteratively. At each iteration we choose, 

2
2

/ 2
1 2

( ) || || ( ) ( )( )

         ( )

t T
k k k

p T q
p

G x y Ax x x aI A A x x

x Tr X Xl l

= - + - - -

+ +
 (7) 

Gk(x) satisfies the condition for MM algorithm when 
max ( )Ta eigvalue A A³   

Now Gk(x) can be alternately expressed as follows, 

2
2

/ 2
1 2

1
( ) || ( ) ||

          ( )

T
k k

p T q
p

G x a x A y Ax x
a

x Tr X X Kl l

= + - -

+ + +
  (8) 

where K consists of terms independent of x. 
Minimizing (8) is the same as minimizing the following, 

' 2 / 21 2
2( ) || || ( )

p T q
k p

G x b x x Tr X X
a a
l l

= - + +   (9) 

where 
1

( )T
k kb x A y Ax

a
= + - . 

The problem now is to minimize (9). To do so, we take 
the derivative of the function, 

12' 1 2 2( ) 2 2 ( )
2

q
p T

kG x x b p x x q XX X
a a
l l --Ñ = - + × +  (10) 

where ‘.’ denotes element wise product. 
Setting the gradient to zero, one gets, 
( )I D x b+ =      (11) 

where 
121 2 2( ) ( )

2 4

q
p TD pDiag x qI XX

a a
l l −-= + Ä . 

Here the Diag operator creates a diagonal matrix out of the 
vector |x|p-2. 
The problem (11) represents a system of linear equations. It 
should be noted that the system (I+D) is symmetric. Hence it 
can be efficiently solved by newly developed MINRES-QLP 
algorithm [12]. 

Based on this derivation, we propose the following 
algorithm to solve (6). 

Intitialize: 0 0x =  
Repeat until: 

2

2
y Ax ε- £  

Step 1. 
1

( )T
k kb x A y Ax

a
= + -  

Step 2. 
121 2 2

1 1 1( ) ( )
2 4

q
p T

k k kD pDiag x qI X X
a a

l l −-
- - -= + Ä  

Step 3. Compute x by solving ( )I D x b+ =  

End 

The stopping criterion here is based on the data 

consistency term. The iterations stop when 
2

2
y Ax ε- £ . 

Here ε is defined as the product of the number of pixels in 
the image frames times the number of dynamic MRI frames 
collected (length of the sequence) times the variance of 
noise (η).  

3. EXPERIMENTAL RESULTS 

In this work, we compare our method with two state-of-the-
art methods in dynamic MRI reconstruction, that are based 
on exploiting the transform domain sparsity and the rank-
deficiency of the image sequence [6, 7]. In [6], the sparsity 
penalty is the l1-norm on the Spatio-temporal TV (total 
variation) and the rank-deficiency penalty is on the Schatten-
q norm; in [7] the sparsity penalty is the l1-norm on the x-f 
space and the rank-deficiency is exploited via a power 
factorization based method. 

All the methods require specification of the two 
parameters λ1 and λ2 – they control the relative importance 
of the sparsity and the rank-deficiency penalties 
respectively. Unfortunately these parameters cannot be 
determined based on rigorous optimization theory. They 
need to be tuned. The tuning mechanisms for determining 
these values are not clearly mentioned in [6, 7]. Therefore in 
this work, we follow a tuning methodology outlined in [3]. 
The value of λ1 was fixed by using the L-curve method after 
putting λ2 to zero, thereby using sparsity only. Once the 
value of λ1 is fixed, the value of λ2 is then chosen by 
minimizing the error in the reconstruction, as compared with 
ground-truth. For our algorithm, we also need to specify the 
value of ε; in this work it is assumed that the K-space data is 
not corrupted by noise hence ε is fixed at a small value of 
10-3. 

In [6] a value of q = 0.1 is used for the Schatten-q 
norm. We use the same value of q for our proposed method. 
Our method also requires specifying the value of p in the lp-
norm; we use p = 0.1. We found experimentally that the 
results are not very sensitive to the value of p as long as it 
varies between 0.1 and 0.4. 

The experiments were carried out on three different 
datasets (Fig. 1). The first and second datasets were 
comprised of the ‘Larynx’ and the ‘Cardiac’ sequences 
respectively. The data were obtained from [13]. The larynx 
sequence was of size 256 x 256, the cardiac sequence was of 
size 128 x 128  for each time frame and 6 images were 
collected per second. The third dataset was obtained from 
[14]. It consisted of a dynamic MRI scan of a person 
repeating the word ‘elgar’. This is the ‘Speech’ Sequence 
[14]. The image was of resolution 180 x 180 and was 
obtained at the rate of 6 frames per second.  
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Fig. 1. Left to Right: Cardiac. Larynx and Speech 
 

For all the data sequences, radial sampling was used. 
This is a non-Cartesian sampling scheme. The mapping from 
the Cartesian image space to the Non-Cartesian Fourier 
space is obtained via the Non-Uniform FFT [15]. We 
provide the results for 48 radial lines. 

In this work we measure the quantitative reconstruction 
accuracy in terms of the signal to noise ratio (SNR). 
However, SNR does not provide a qualitative measure on 
the reconstruction accuracy, therefore we also provide the 
difference images (difference between the reconstructed and 
the ground-truth) for qualitative evaluation. 

Table 1. Reconstruction Accuracy (SNR) for 48 radial lines 
Sequence Name [6] [7] Proposed 
Larynx 22.6 21.9 23.8 
Cardiac 22.9 22.4 24.6 
Speech 15.2 14.8 16.8 

The tables show that our proposed method yield the best 
reconstruction results. In order to test if our reconstruction 
results show a significant improvement over the previous 
methods we carried out a simple statistical t-test. We found 
that the reconstruction accuracy from our method is 
significantly different (better) than [6] and [7]. However our 
tests revealed that the reconstruction results from [6] and [7] 
are not significantly different from each other. The tests 
were carried out at 5% confidence interval.  

For the qualitative aspects of the reconstruction, we 
provide the reconstructed and difference images for the 
Speech sequence. Owing to limitations in space we can show 
the images for only one sequence. The contrast of difference 
images have been magnified 5 times for visual clarity. 

 

 
Fig. 2. 1st Column: [6]; 2nd Column: [7]; 3rd Column: 
Proposed 

Our proposed method gives the best reconstruction 
results. The difference image is the darkest, meaning that the 
error between the ground-truth and the reconstructed image 
is the least. The difference images from [6] and [7] are 
almost the same and worse than our proposed method. 

4. CONCLUSION 

In this work we propose a new method for dynamic MRI 
reconstruction. Dynamic MRI sequences are temporally 
correlated. When the MRI frames are stacked as columns of 
a matrix, the resultant matrix has a sparse representation in 
the x-f space and also is rank deficient. This information was 
exploited previously in [6, 7] to yield good dynamic MRI 
reconstruction results. Our work follows from [6, 7] but 
deviates from them in one key aspect. We use non-convex 
penalties both for sparsity and rank-deficiency. Experimental 
results show that our method yields significantly better 
results than [6, 7].  

Our method requires solving a least squares 
optimization problem regularized with an lp-norm (as the 
sparsity penalty) and Sa chatten-q norm (as the rank-
deficiency penalty). There is no efficient algorithm to solve 
this problem. We derived an efficient algorithm to solve it 
based on the Majorization Minimization approach. 

In this work, we assume that the dynamic MRI sequence 
is temporally correlated which gives rise to the fact that it is 
sparse in x-f space. It does not take into account the 
information that the MR image (at each time point in the 
sequence) is also spatially correlated. In future, we intend to 
exploit this information as well, leading to full utilization of 
the spatio-temporal redundancy in the dynamic MRI 
sequence. This is likely to improve the results even more. 
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