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ABSTRACT

A new algorithm for the reconstruction of signals in compres-
sive sensing framework is proposed. The algorithm is based
on a least-squares method which incorporates a regularization
to promote sparsity on the gradient of the signal. It uses a se-
quential basic conjugate-gradient method, and it is especially
suited for the reconstruction of signals which exhibit tempo-
ral correlation, e.g., electrocardiogram (ECG) signals. Sim-
ulation results are presented which demonstrate that the pro-
posed algorithm yields upto 80.28% reduction in mean square
error and from 49.95% to 65.64% reduction in the required
amount of computation, relative to the state-of-the-art block
sparse Bayesian learning bound-optimization algorithm.

Index Terms— Compressive sensing, electrocardiogram,
conjugate gradient, sparse gradient

1. INTRODUCTION

Compressive sensing (CS) is a novel technique for the acqui-
sition of signals in terms of a small number of measurements
[1] [2] [3]. Sparse signal recovery is a problem associated
with CS, and the state-of-the-art signal recovery algorithms
are based on ℓ1 and ℓp minimization [4] [5] [6], ℓ0 minimiza-
tion [7] [8], greedy approximation [9] [10], iterative shrinkage
[11] [12], and Bayesian learning [13]. These algorithms are
not very effective for the reconstruction of signals (i) which
exhibit temporal correlation and (ii) which are not sparse in
either time domain, transform domain, or with respect to a
dictionary. Recently, so called block sparse Bayesian learn-
ing bound-optimization (BSBL-BO) algorithm [14] has been
effectively applied for the reconstruction of temporally corre-
lated ECG signals [15].

In this paper, a new algorithm, namely, ℓdp-regularized
least-squares (ℓdp-RLS) algorithm, is proposed. The algorithm
is based on the minimization of an ℓdp-pseudonorm regular-
ized squared error. The ℓdp pseudonorm is used to promote

The authors would like to thank the Canada Research Chairs program
for supporting this research.

sparsity on the gradient of the signal and a sequential ba-
sic conjugate-gradient method is applied for the optimization.
The ℓdp-RLS algorithm yields improved reconstruction perfor-
mance for temporally correlated ECG signals relative to the
BSBL-BO algorithm.

2. BACKGROUND AND PREVIOUS WORK

A discrete-time signal x of length N is said to be K sparse
with respect to an orthonormal basis D, if it can be expressed
as a linear combination of total K columns of D, i.e., x =
K∑
i=1

aidi typically with K ≪ N where di is a column of D.

The signal acquisition procedure in CS can be character-
ized by

y = Φx = ΦDa,

where y is a measurement vector of size M , Φ is a measure-
ment matrix of size M × N , typically with M ≪ N , and a
is the coefficient vector of length L.

In principle, signal x can be recovered from the measure-
ment y by solving the optimization problem

minimize
a

||a||0
subject to: y = ΦDa

(1)

and using the resulting solution in x = Da. Unfortunately,
the computational complexity involved in solving the above
problem grows exponentially with the signal length N .

The ℓ1-minimization based basis pursuit algorithm is a
computationally tractable algorithm which solves the opti-
mization problem

minimize
a

||a||1
subject to: y = ΦDa

, (2)

where ||a||1 =
N∑
i=1

|ai| is the ℓ1 norm of a. The solution of

the problem in (1) can be found by solving the problem in (2)
provided that a condition which requires the sparsity value of
a to be sufficiently small is satisfied [1] [2] [3].
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The ℓp-pseudonorm minimization based algorithms,
which solve the optimization problem

minimize
a

||a||pp
subject to: y = ΦDa

, (3)

where ||a||pp =
N∑
i=1

|ai|p with p < 1, have been shown to

offer improved signal reconstruction performance relative to
the techniques based on solving the problem in (2) [5] [6].

3. ℓdp-REGULARIZED LEAST-SQUARES
ALGORITHM

3.1. ℓdp pseudonorm and problem formulation

We define the ℓdp pseudonorm of signal x as

||dx||p =

[
N−1∑
i=1

|xi − xi+1|p
]1/p

(4)

which is essentially the ℓp pseudonorm of the first-order dif-
ference dx whose ith component is given by xi − xi+1. With
p ≤ 1, function ||dx||p gives a measure of the sparsity in
dx. In other words, it gives an approximate measure of the
number of elements of the set {i : 1 ≤ i < N} for which
xi ̸≈ xi+1. Therefore, a signal x obtained by minimizing
the function ||dx||p tends to exhibit increased correlation be-
tween its succeeding components. Consequently, the algo-
rithm to be presented, which minimizes the function ||dx||p,
is expected to be more effective for the reconstruction of tem-
porally correlated signals.

It can be shown that for p ≤ 1, function ||dx||p is not
differentiable. To make it differentiable, and thereby, to facil-
itate the optimization to be presented below, we consider the
approximate ℓdp pseudonorm given by

||dx||pp,ϵ =
N−1∑
i=1

[
(xi − xi+1)

2 + ϵ2
]p/2

(5)

where ϵ > 0 is the approximation parameter. We should men-
tion that an approximation similar to this has recently been
used to approximate the ℓp pseudonorm [6] [16] [17]. To the
best of our knowledge, the pseudonorm given in (5) has not
been used in the context of signal reconstruction in CS.

We propose to recover signal x from measurements y by
solving the ℓdp-regularized least-squares problem

minimize
x

f(x) = 1
2 ||Φx− y||22 + λ ||dx||pp,ϵ (6)

with p ≤ 1 and small ϵ, where λ is the regularization param-
eter.

We end this subsection with the remark that the ℓdp
pseudonorm is related to the widely used total-variation (TV)

norm [18] [19] [20] in that the function ||dx||pp,ϵ reduces to
the one-dimensional version of the TV norm when p = 1 and
ϵ = 0.

3.2. Optimization

As long as ϵ > 0, the function f(x) in (6) remains differen-
tiable whose gradient g and Hessian H are given by

g = ΦT (Φx− y) + λgd
p (7)

and
H = ΦTΦ+ λU. (8)

In (7), gd
p is the gradient of function ||dx||pp,ϵ given by

gd
p =

[
gdp1 g

d
p2 · · · gdpN

]T where

gdpi =

 p · ci for i = 1
p · (−ci−1 + ci) for 1 < i < N
p · (−ci−1) for i = N

(9)

and
ci =

[
(xi − xi+1)

2 + ϵ2
]p/2−1

(xi − xi+1) (10)

for i = 1, 2, . . . , N − 1.
In (8), U is the Hessian of function ||dx||pp,ϵ whose

{i, j}th component is given by

ui,j =



hi for i = j = 1
hi−1 + hi for i = j, 1 < i < N
hi−1 for i = j = N
−hi for i = j − 1, 1 < j ≤ N
−hj for j = i− 1, 1 < i ≤ N
0 otherwise

(11)

where

hi = p
[
(xi − xi+1)

2 + ϵ2
]p/2−2 [

(p− 1)(xi − xi+1)
2 + ϵ2

]
(12)

for i = 1, 2, . . . , N − 1.
It can be shown that the Hessian H in (8) is positive defi-

nite as long as hi > 0, ∀i. Consequently, the objective func-
tion f(x) in (6) is convex over a region characterized by
{x : |xi − xi+1| < ϵ√

1−p
for 1 ≤ i < N}, where xi

is the ith component of x. This implies that, for a sufficiently
large value of ϵ the objective function f(x) has a large con-
vex region, and it is easy to locate the minimizer of such an
objective function. However, the global minimizer of f(x) is
the desired solution only when ϵ is sufficiently small. There-
fore, we apply a sequential optimization strategy whereby the
problem in (6) is solved sequentially for a set of decreasing
values of ϵ. Such an optimization procedure can be described
as follows:

• Select two sufficiently large values, one of ϵ and the
other of λ. Solve the problem in (6) using the zero vec-
tor as an initializer.
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• Reduce the values of ϵ and λ and solve the problem in
(6) again using the solution obtained from the previous
optimization as an initializer.

• Repeat this procedure until the problem in (6) is solved
for a sufficiently small values of ϵ and λ.

• Output the final solution and stop.

Although the optimization problem of the form (6) is usu-
ally solved with a fixed value of λ, we have proposed to solve
the problem in (6) for a set of decreasing values of λ. This
helps to improve the convergence of the algorithm.

To solve the problem in (6) for fixed values of ϵ and λ, we
use the basic conjugate-gradient (BCG) algorithm described
in [21], which is based on gradient g and Hessian H given
in (7) and (8), respectively. The BCG algorithm is a simple,
efficient, and well tested algorithm which has been found to
be effective to solve the problem in (6). In the kth iteration of
the BCG algorithm, the iterate xk is updated as [21]

xk+1 = xk + αkdk, (13)

where

dk = −gk + βk−1dk−1, (14)

βk−1 =
||gk||22

||gk−1||22
, (15)

αk =
||gk||22
dT
k Hkdk

. (16)

The Hessian Hk in (16) need not be evaluated explicitly.
Instead, its denominator term can be computed efficiently as

dT
k Hkdk = ||Φdk||22 + λ ||pk||

2
2 , (17)

where pk = [p1 p2 · · · pN−1]
T and

pi =
√

hid
d
i for i = 1, 2, . . . , N − 1. (18)

In (18), hi can be computed using (12) and ddi = dki−dk(i+1)

where dki is the ith component of dk.
Note that, in order for the Hessian matrix Hk to be positive

definite, we must have hi > 0,∀i. Therefore, before using in
(18), hi’s are thresholded as

hi = max{hi, δ}, for i = 1, 2, . . . , N − 1,

where δ is a small positive scalar.

3.3. Algorithm

The proposed ℓdp-regularized least-squares (ℓdp-RLS) algo-
rithm for the reconstruction of temporally correlated sparse
signals is summarized in Table 1. The algorithm takes param-
eters T , p, ϵ1, ϵT , λ1, λT , Et, Lb, r, and δ as inputs. Total
T − 2 values of ϵ lying in between ϵ1 and ϵT are computed as

ϵt = ϵ1 exp(−α(t− 1)) for t = 2, 3, . . . , T − 1 (19)

where α = log(ϵ1/ϵT )/(T − 1). Similarly, total T − 2 values
of λ lying between λ1 and λT are computed as

λt = λ1 exp(−γ(t− 1)) for t = 2, 3, . . . , T − 1 (20)

where γ = log(λ1/λT )/(T − 1).

Table 1. ℓdp-RLS Algorithm

Step 1
Input: T , p, ϵ1, ϵT , λ1, λT , Φ, y, Et, Lb, r, and δ.
Set xs = 0.
Step 2
Compute ϵt for t = 2, 3, . . . , T − 1 using (19) and

λt for t = 2, 3, . . . , T − 1 using (20).
Step 3
Repeat the following for t = 1, . . . , T

i) Set ϵ = ϵt, λ = λt, k = 0, x0 = xs, Er = 1010.
ii) Repeat the following while Er > Et,

a) Compute xk+1 using (13), (14), (15), (16), (17).
b) Compute L = Lb + round(t/r).
c) Set k = k + 1.
d) Exit loop if k > L.
e) Compute Er = ||αkdk||2.

iii) Set xs = xk.
Step 4
Output x∗ = xs and stop.

4. SIMULATION RESULTS

In the first simulation, an ECG signal x of length N = 250
was constructed by retaining the first 250 samples of the sec-
ond channel of the cutaneous potential recordings of a preg-
nant woman [22] which contains eight channel recordings.
The number of measurements was set to M = 125. A sparse
measurement matrix was constructed as follows: a) a matrix
Φ of size M × N with all zero elements was constructed
and b) randomly chosen 15 components of each column of Φ
were set to unity. As suggested in [15] and [23], a measure-
ment matrix constructed using this approach can have an en-
ergy efficient implementation for CS. Measurement was taken
as y = Φx. The ℓdp-RLS algorithm was run with p = 1,
ϵ1 = 100, ϵT = 1e − 2, λ1 = 100, λT = 1e − 2, T = 20,
Et = 1e−25, Lb = 15, r = 4, and δ = 1e−5. Matlab imple-
mentation of the BSBL-BO algorithm was downloaded from
[24]. In [15], the BSBL-BO algorithm is shown to offer supe-
rior reconstruction performance for the ECG signals relative
to several state-of-the-art signal reconstruction algorithms in-
cluding compressive sampling matching pursuit (CoSaMP)
[25], basis pursuit (BP) [4], smoothed ℓ0 (SL0) [7], and block
orthogonal matching pursuit (BOMP) [26] algorithms. There-
fore, we compare the performance of the proposed ℓdp-RLS
algorithm with that of the BSBL-BO algorithm. The original
signal and the signals reconstructed using the two algorithms
are shown in Fig. 1. As can be seen, the signal reconstructed
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Fig. 1. Original signal and signals reconstructed using the
ℓdp-RLS and BSBL-BO algorithms.

using ℓdp-RLS algorithm appears better than that reconstructed
using BSBL-BO algorithm. Mean square error (MSE) was
measured as (1/N)

∑N
i=1(xi − x̂i)

2, where xi and x̂i are the
ith components of x and x̂, respectively, and x̂ is the recon-
structed signal. CPU time required by the both algorithms
were measured by using MATLAB commands tic and toc.
The CPU time and MSE for both the algorithms are shown in
Table 2. One can notice that the ℓdp-RLS algorithm requires

Table 2. Comparison of the ℓdp-RLS and BSBL-BO algo-
rithms

Algorithm CPU time, seconds MSE
ℓdp-RLS 0.17377 2.2523

BSBL-BO 0.85073 3.0863

much less CPU time and yields less MSE compared to the
BSBL-BO algorithm.

In the second simulation, the length of a signal was set
to N = 256 and total eight values of the number of mea-
surements were chosen as M = round(t × N) with t =
0.1, 0.2, . . . , 0.8. Test signals were obtained from the normal
sinus rhythm database record number 16265 from Physionet
[27]. This record contains a two channel ECG signal of 24
hours duration sampled at the rate of 128 samples per second.
A signal x of length N was constructed by selecting N con-
secutive samples of the first channel ECG signal from a ran-
dom location. A measurement matrix Φ was constructed and
measurement was taken using the procedure used in the first
simulation except that each column of Φ had round(0.06 ×
N) ones and M − round(0.06 × N) zeros. The ℓdp-RLS al-

gorithm was run with the same parameters as in the first sim-
ulation except σ1 = 600, λ1 = 600, and T = 30. Both the
algorithms were applied 1000 times with a different x and a
different Φ each time. Average MSE and average CPU time
are plotted in Fig. 2; the left panel shows average MSE and
the right panel shows average CPU time over 1000 runs. As
can be seen, both the MSE and CPU time for the ℓdp-RLS algo-
rithm is less than that for the BSBL-BO algorithm. The MSE
for the ℓdp-RLS algorithm was less than that for the BSBL-
BO algorithm by a maximum of 80.28% for M = 128. The
CPU time for the ℓdp-RLS algorithm was less than that for the
BSBL-BO algorithm by a minimum of 49.95% and a maxi-
mum of 65.64%.

50 100 150 200
10

1

10
2

10
3

10
4

Measurements, M

M
ea

n 
sq

ua
re

 e
rr

or
 

 

lpd−RLS
BSBL−BO

50 100 150 200

0.1

0.15

0.2

0.25

0.3

0.35

Measurements, M

Se
co

nd
s

 

 

lpd−RLS
BSBL−BO

Fig. 2. Average mean square error (left panel) and average
CPU time (right panel) for the ℓdp-RLS and BSBL-BO algo-
rithms over 1000 runs.

5. CONCLUSION

A new algorithm for compressive sensing, namely, the ℓdp-
RLS algorithm, for the reconstruction of signals has been
proposed. The algorithm is based on minimizing an ℓdp-
regularized squared-error, and it is especially suited for the
recovery of temporally correlated signals. As demonstrated
using simulation results, the ℓdp-RLS algorithm yields reduced
MSE and reduced CPU time for the reconstruction of ECG
signals relative to the state-of-the-art BSBL-BO algorithm.

6. RELATION TO PRIOR WORK

The presented work takes advantage of smoothing of ℓp
pseudonorm and sequential Fletcher-Reeves’ conjugate-
gradient method which were recently applied in the algo-
rithms for the reconstruction of sparse signals for compres-
sive sensing [6] [17]. These algorithms promote sparsity on
signal coefficients. Thus, they are not very effective for the
reconstruction of temporally correlated ECG signals. On the
other hand, the proposed algorithm promotes sparsity on the
gradient. Consequently, this algorithm encourages temporal
correlation on the signal and it is effective for the reconstruc-
tion of ECG signals.
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