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ABSTRACT

This paper proposes a novel method for extraction of discrim-
inant spatio-spectral EEG features in motor imagery brain-
computer interfaces. Considering a heteroscedastic binary
classification setup, this method extracts the spatio-spectral
features whose variance is maximized for one brain task and
minimized for the other task. Therefore, our method can be
considered as a spatio-spectral generalization of the conven-
tional common spatial patterns (CSP) algorithm. In compari-
son to the similar solutions in the literature, such as filter-bank
CSP (FBCSP) method, the proposed method benefits from
joint processing of both spatial and spectral features, which
improves the overall performance of the BCI while reduc-
ing its computational cost. Furthermore, our algorithm pro-
vides a simple measure that allows for ranking the discrimi-
nant power of extracted spatio-spectral features, which is not
possible in FBCSP method. The experimental results demon-
strate that the proposed method outperforms FBCSP for both
raw EEG and preprocessed EEG data.

Index Terms— brain computer interface, common spatial
patterns, spatio-spectral features, matrix-variate Gaussian

1. INTRODUCTION

Electroencephalogram (EEG) signals are widely used in non-
invasive brain-computer interfaces (BCIs) to provides a com-
munication channel between the brain and external world.
BCIs can be used in various applications such as artificial
limbs, speech synthesizers, and navigation in virtual environ-
ments. This paper focuses on BCI systems that are based on
decoding EEG signals recorded during motor-imagery (MI)
tasks. However, our proposed method can be deployed in
other BCI systems that utilize multichannel EEG signals.

During motor-imagery tasks, EEG signals exhibit task-
specific features in both spatial domain and spectral (or fre-
quency) domain [1–4]. In the literature, various algorithms
have been proposed to extract these discriminant features
through spatial and spectral processing of the data. One of
the most powerful algorithms is the common spatial patterns
(CSP) method [2, 5, 6]. CSP is originally designed for binary

classification of brain tasks and extracts the spatial features
that exhibit maximum variance for one task while having
minimum variance for the other task. Then, the variances of
these spatial features are used as a new discriminant feature
set which can be subsequently passed to a classifier.

A main shortcoming of CSP is that it ignores the spec-
tral characteristics of the EEG signal. To alleviate this prob-
lem, several variants of CSP have been proposed in the lit-
erature [7–12]. One of the promising solutions is the work
in [12] which is illustrated in Fig. 1(a). In this approach, dif-
ferent EEG rhythms are obtained by means of bandpass fil-
tering the EEG signal, and then a bank of CSP modules is
deployed to separately extract spatial features from each EEG
rhythm; hence the name filter-bank CSP (FBCSP). The result-
ing features are then used for classification of the EEG data.
Despite its high performance, FBCSP suffers from high com-
putational cost since it requires a separate feature extractor for
each spectral band. Moreover, since in FBCSP each spectral
band is treated independently, possible correlations between
different EEG rhythms are completely ignored in the feature
extraction stage, which in turn can cause redundancy in the
extracted features. Finally, FBCSP does not provide any mea-
sure for comparing discriminant power of the features ob-
tained from different spectral bands. As a consequence, [12]
suggests to use a feature selection module to reduce the di-
mensionality of the feature space prior to classification.

This paper proposes a novel algorithm for joint extraction
of spatial and spectral features from different EEG rhythms.
The proposed method, called separable common spatio-
spectral patterns (SCSSP), is based on a matrix-variate Gaus-
sian model for spatio-spectral EEG patterns which allows
us to develop a bilinear feature extractor. Compared to the
FBCSP method, our algorithm has the following main advan-
tages: First, it involves only two CSP-type modules, regard-
less of the number of frequency bands (Nf ). As a result, the
computational cost of training SCSSP algorithm in a practical
BCI is significantly less than FBCSP. Second, the features are
extracted based on joint analysis of both spatial and spectral
characteristics of the signal. Therefore, correlations between
different spectral bands can be exploited for feature extrac-
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(a)

(b)

Fig. 1. Spatio-Spectral feature extraction schemes: (a) Filter-bank common spatial pattern (FBCSP), (b) Separable common
spatio-spectral pattern (SCSSP)

tion. Third, a measure is provided to rank the discriminatory
power of extracted spatio-spectral features, which eliminates
the need for a subsequent feature selection stage.

2. SYSTEM MODEL

Fig. 1(b) illustrates the processing pipeline of our proposed
algorithm. Consider an EEG epoch with Nt samples from
Nch channels (or electrodes)1. After passing the EEG epoch
through a set of Nf bandpass filters, we get Nt matrices of
size Nf × Nch, each of which representing a spatio-spectral
EEG pattern. The ultimate goal is to extract the most discrim-
inant features from these matrix-variate patterns.

2.1. Matrix-Variate Gaussian Model for Spatio-Spectral
EEG patterns

Let X ∈ RNf×Nch denote the matrix-variate EEG pattern.
Each motor-imagery task, denoted by class Ωi, is character-
ized by the likelihood density f(X|Ωi). We adopt a matrix-
variate Gaussian model [13] for these likelihoods:

f(X|Ωi) = N (Mi,Φi,Ψi) for 1 ≤ i ≤ C, (1)

where Mi = EX|Ωi
(X), and

Φi =tr−1(Ψi) ∗ EX|Ωi
((X−Mi)(X−Mi)

T ), (2)

Ψi =tr−1(Φi) ∗ EX|Ωi
((X−Mi)

T (X−Mi)), (3)

Here, Mi denotes the class mean, Φi is the spectral covari-
ance, also called column-wise or left covariance, and Ψi is the

1In this paper, scalars, vectors, and matrices are respectively shown in
regular lowercase/uppercase (e.g. a or A), boldface lowercase (e.g. a), and
boldface uppercase (e.g. A). Trace of A is denoted by tr(A). Also, the
Kronecker product of the matrices A and B is denoted as A⊗B.

spatial covariance, also called row-wise or right covariance.
Since X is obtained from bandpass filtering of the EEG sig-
nal, all classes have zero mean, i.e., Mi = 0 for 1 ≤ i ≤ C.
Therefore, the discriminant information are contained in the
second order statistics of the data.

Let x = vec(X) be the vectorized representation of X
obtained from concatenation of its columns, and denote the
covariance matrix of x under Ωi by Σi. Based on the matrix-
variate Gaussian model in (1), Σi can be expressed in terms
of the spatial and spectral covariances: Σi = Ψi⊗Φi. More-
over, any bilinear transformation of the form y = aTXb is
equivalent to a linear transformation on x as follows: y =
vec(b ⊗ a)Tx. These two separability properties are used in
the next section to derive the SCSSP algorithm.

2.2. Separable Common Spatio-Spectral Patterns Method

Consider a binary classification problem (i.e., C = 2). Fol-
lowing the general approach of CSP algorithm in [2, 5], we
look for linear transformations wk that provide uncorrelated
spatio-spectral features yk = wT

k x, whose variance is max-
imum in one class and minimum in the other class. Similar
to CSP method, wk are the eigenvectors obtained from the
following generalized eigenvalue problem:

Σ1W = (Σ1 +Σ2)WΛ, (4)

The next theorem provides the solution for (4).

Theorem 1. Let x = vec(X), where X ∈ RNf×Nch has a
matrix-variate Gaussian distribution as given by (1). Then,
the solution to (4) is given as follows:

Λ = (ΛR⊗ΛL)
(
ΛR⊗ΛL + (INch

−ΛR)⊗
(
INf

−ΛL

))−1

W = WR ⊗WL
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where ΛR, WR, ΛL and WL are the solutions to generalized
eigenvalue problems for spatial and spectral covariances:

Ψ1WR = (Ψ1 +Ψ2)WRΛR, (5)
Φ1WL = (Φ1 +Φ2)WLΛL, (6)

Proof. Proof by substitution.

Let λk, 1 ≤ k ≤ NfNch, denote the diagonal entries of
Λ sorted in descending order. Theorem 1 implies that

λk =
λ
i[k]
L λ

j[k]
R

λ
i[k]
L λ

j[k]
R + (1− λ

i[k]
L )(1− λ

j[k]
R )

(7)

where λ
i[k]
L and λ

j[k]
R are the corresponding eigenvalues in

ΛL and ΛR, with 1 ≤ i[k] ≤ Nf and 1 ≤ j[k] ≤ Nch.
Also, the eigenvectors corresponding to λk are expressed as
wk = wR,j[k] ⊗ wL,i[k], where wR,j[k] and wL,i[k] are the
eigenvectors in WR and WL corresponding to λ

j[k]
R and λ

i[k]
L .

Note that for k = 1 and k = NfNch the pair of features
[y1, yNfNch

]T provide the most discriminant power. Simi-
larly, the features corresponding to k = 2 and k = (NfNch−
1) are the second most discriminant features, and so on. Using
these results, together with the separability property explained
in Section 2.1, we propose the following algorithm for extrac-
tion of the “d” most discriminant spatio-spectral features:

1. Solve the generalized eigenvalue problems in (5) and
(6) for spatial and spectral covariance matrices.

2. Using (7), calculate the eigenvalues λk and sort them
in descending order to determine the corresponding in-
dices i[k] and j[k].

3. Extract the d most discriminant features by calculating

yk = wT
L,i[k]XwR,j[k] for k ∈ K (8)

K = {1, NfNch, 2, (NfNch − 1), · · · ,
d

2
, (NfNch −

d

2
+ 1)}.

Note that here d is an even number, similar to the CSP.

4. Calculate the normalized log-power features

zk = log

(
var (yk)

Σk∈Kvar (yk)

)
(9)

where var (yk) function calculates the variance or
power of yk over Nt samples.

5. Construct the feature vector z = [z1, zNfNch
, · · · ]T ∈

Rd×1 as the output of SCSSP algorithm.

It is worth mentioning that λk ranges between zero and
one, and its value provides a measure for discriminant power
of feature yk. Similar to the conventional CSP method, values
close to zero or one correspond to high discriminant features,

whereas values close to 1
2 correspond to low discriminant fea-

tures. Thus, the pairs of extracted spatio-spectral features in z
are sorted according to their discriminant power in descend-
ing order. These features are then passed to a classifier to de-
termine the Ω̂. In this paper, we consider two possible choices
for classifier: (a) Naive Bayes classifier, (b) linear classifier.

Multiclass Extension: The algorithm proposed in this
section is derived for a binary classification problem. In case
that C > 2, various different binary-to-multiclass extension
approaches can be used, such as one-versus-rest (OVR), pair-
wise, and divide-and-conqure methods [14]. Comparison of
these multiclass extension techniques is outside the scope of
this paper and we only consider the OVR approach. In the
OVR method, the SCSSP module extracts d spatio-spectral
features for discrimination of each class from the rest of
classes. Therefore, a total number of d ∗ C features will be
passed to the classifier.

Parameter Estimation: In (5) and (6), we need the spa-
tial and spectral covariances, which can be obtained from the
following moment estimators [15]:

Φ̂i =
1

NchNi

Ni∑
n=1

XnX
T
n , Ψ̂i =

1

NfNi

Ni∑
n=1

XT
nXn

where Ni is the number of training samples Xn, 1 ≤ n ≤ Ni,
available for each class Ωi.

3. EXPERIMENTAL RESULTS

In this section the performance of proposed SCSSP method
will be compared against the FBCSP method, using data set V
from BCI competition III [16]. To provide a fair comparison,
we use both Naive Bayes (NB) classifier and linear classifier
for each method. Here, the performance of the overall BCI
system is measured by correct classification rate (CCR). This
data set contains EEG signals recorded from three subjects in
four sessions. The first three sessions are used for training
purposes, and the fourth one is used for competition, i.e. test-
ing phase. The goal is to classify the imagined tasks every
0.5 second, using the last second of data. The signals are col-
lected using 32-electrode Biosemi system at 512Hz sampling
rate. Each session consists of sequential 15-second trials of
three tasks: left-hand movement, right-hand movement, and
generation of words beginning with a random letter.

The database providers have suggested to perform surface
Laplacian (SL) spatial filtering on EEG and then select the
8-centro-parietal channels to reduce the dimensionality of the
data. As a result, four versions of preprocessed data will stud-
ied in this section for comparative purposes: (a) 32-channel
raw EEG, (b) 8-centro-parietal channels from raw EEG, (c)
32-channel SL-filtered EEG, (d) 8-centro-parietal channels
from SL-filtered EEG. In order to perform bandpass filtering
of the signals, we use Chebyshev Type II filters of order 6 and
bandwidth of 4 Hz. A total of Nf = 6 filters are used to cover
the α and β rhythms (8− 32 Hz).
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Table 1. Correct classification rate (CCR) results in the cross-validation phase.

EEG Data FE Method Classifier
Subject a Subject b Subject c Average

%CCR d %CCR d %CCR d %CCR

FBCSP NB 58.22 ± 7.26 108 (=6*18) 48.10 ± 5.86 48 (=6*8) 45.62 ± 0.80 60 (=6*10) 50.65 ± 6.67
Raw EEG Linear 63.25 ± 3.46 72 (=6*12) 50.42 ± 5.85 72 (=6*12) 48.73 ± 1.73 60 (=6*10) 54.13 ± 7.94

(32 Channel) SCSSP NB 56.88 ± 13.06 100 48.66 ± 3.23 168 47.60 ± 2.63 48 51.05 ± 5.08
Linear 72.17 ± 5.97 34 59.85 ± 5.65 46 49.72 ± 2.34 40 60.58 ± 11.24

FBCSP NB 60.64 ± 4.45 36 (=6*6) 46.62 ± 5.66 48 (=6*8) 45.83 ± 4.01 36 (=6*6) 50.97 ± 8.22
Raw EEG Linear 65.99 ± 3.96 36 (=6*6) 49.79 ± 1.84 48 (=6*8) 43.50 ± 3.74 48 (=6*8) 53.10 ± 11.60

(8 Channel) SCSSP NB 61.21 ± 9.44 48 48.59 ± 11.53 48 45.34 ± 2.02 46 51.71 ± 8.38
Linear 70.55 ± 1.11 38 50.56 ± 2.96 30 46.89 ± 5.93 14 56.00 ± 12.73

FBCSP NB 58.71 ± 6.96 108 (=6*18) 48.10 ± 4.96 84 (=6*14) 46.40 ± 2.97 96 (=6*16) 51.07 ± 6.67
SL-filtered EEG Linear 59.26 ± 5.25 96 (=6*16) 52.60 ± 8.61 36 (=6*6) 48.45 ± 1.92 72 (=6*12) 53.43 ± 5.45

(32 Channel) SCSSP NB 59.06 ± 12.90 174 52.25 ± 3.72 44 49.65 ± 4.57 106 53.65 ± 4.86
Linear 70.41 ± 5.86 38 61.18 ± 8.50 40 48.73 ± 0.76 52 60.11 ± 10.88

FBCSP NB 61.99 ± 3.30 48 (=6*8) 44.66 ± 8.90 48 (=6*8) 47.53 ± 3.82 48 (=6*8) 51.39 ± 9.29
SL-filtered EEG Linear 65.14 ± 2.65 48 (=6*8) 55.20 ± 4.11 48 (=6*8) 48.52 ± 2.02 36 (=6*6) 56.29 ± 8.37

(8 Channel) SCSSP NB 59.32 ± 5.76 44 45.64 ± 8.55 48 49.93 ± 3.60 38 51.63 ± 7.00
Linear 67.39 ± 1.95 46 58.23 ± 6.55 26 52.82 ± 2.32 46 59.48 ± 7.37

Table 2. Correct classification rates (CCR) in testing phase.
EEG Data FE Method Classifier %CCR

Subj. a Subj. b Subj. c Avg.

FBCSP NB 68.09 54.85 39.29 54.07
Raw EEG Linear 71.06 62.66 48.32 60.68

(32 Channel) SCSSP NB 68.51 54.64 32.98 52.05
Linear 74.89 71.10 42.02 62.67

FBCSP NB 64.04 55.91 49.37 56.44
Raw EEG Linear 74.04 53.38 48.74 58.72

(8 Channel) SCSSP NB 65.32 53.80 47.48 55.53
Linear 73.40 52.95 47.06 57.81

FBCSP NB 66.17 60.55 40.34 55.68
SL-filtered EEG Linear 66.60 50.00 48.95 55.18

(32 Channel) SCSSP NB 69.36 54.64 39.08 54.36
Linear 75.32 73.42 45.59 64.78

FBCSP NB 69.79 50.42 45.59 55.27
SL-filtered EEG Linear 72.77 60.97 48.53 60.76

(8 Channel) SCSSP NB 65.53 52.53 46.01 54.69
Linear 71.91 62.03 49.37 61.10

A three-fold cross-validation on the training data (i.e., the
first three session) is used to determine the optimal value of
d for each method. Tab. 1 provides the optimal dimension
for different subjects in each method and their correspond-
ing CCR ± its standard deviation. These results reveal that
in general, the SCSSP method with linear classifier requires
minimum number of features. This can be attributed to the
fact that SCSSP jointly processes the spatial and spectral fea-
tures of the data and takes into account possible correlations
between different frequency bands. Moreover, note that the
number of features in FBCSP method is constrained to Nf ∗
dcsp due to its inability to compare discriminate power of
features from different frequency bands. Finally, it can be
seen that during the validation phase, SCSSP outperforms the
FBCSP method regardless of the classifier type.

Tab. 2 outlines the CCR results for the testing phase. Here,
we have used the optimal values of d from Tab. 1. The win-
ning algorithm in this competition achieves a performance

of 62.72% without post processing [17]. In comparison to
both FBCSP and the method in [17], the proposed SCSSP
algorithm provides competitive performance, specially when
all the 32-channels are used and hence dimensionality of the
original data is high. These results also cofirm that the matrix-
variate Gaussian distribution is a reasonable assumption for
spatio-spectral EEG patterns.

4. CONCLUSIONS AND REMARKS

A new approach for spatio-spectral feature extraction from
EEG signals was proposed in this paper. In order to derive
this feature extractor, we adopt a matrix-variate Gaussian
model for the spatio-spectral EEG patterns, which allows for
a separable structure for the covariance of the data; hence the
name separable common spatio-spectral patterns (SCSSP).
Using experimental results on data set V from BCI com-
petition III, it was shown that the proposed SCSSP method
outperforms the existing FBCSP method, while requiring a
relatively lower number of features. These experimental re-
sults indirectly validate the matrix-variate Gaussian model for
the spatio-spectral patterns which are obtained from bandpass
filtering the EEG signal. It is noteworthy that the authors’ re-
cent study on linear discriminant analysis in [18] has shown
that the matrix-variate Gaussian model can also be used for
characterization of spatio-spectral patterns which are ob-
tained from applying short-time Fourier transformation to
the EEG data. Those results in conjunction with the results
of the current paper suggest that the covariance between any
two rhythmic activities in two different EEG channels can
be decomposed into two multiplicative components: (a) A
spectral covariance term that only depends on the frequency
of these two rhythms, and (b) A spatial component that only
depends on the spatial location of these two EEG channels.
In order to investigate the validity of this conjecture, further
statistical studies on different EEG databases is required.
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