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ABSTRACT

We present a novel method based on joint tensor diagonalization for
selecting or weighting electroencephalogram (EEG) data to estimate
the covariance matrices to accurately find common spatial pattern
(CSP). CSP and its variants need a pair of covariance matrices of
two different tasks, which are obtained as the average over trials.
This trial average can affect the accurate estimation of covariance
matrices and cause the decrease of classification accuracy in brain
machine interfaces (BMIs) due to the non-stationarity of EEG or ex-
perimental environments. We focus on the fact that finding CSP is
equivalent to joint diagonalization of a pair of covariance matrices,
and extend it to joint diagonalization of data tensor at each trial to
determine importance of each trial. Numerical experiment of mo-
tor imagery (MI) classification supports the proposed algorithm is
effective.

Index Terms— Brain machine interfaces, EEG signal process-
ing, common spatial pattern, tensor algebra, joint diagonalization

1. INTRODUCTION

Brain machine interfacing (BMI) is a challenging application of sig-
nal processing, machine learning, and neuroscience [1]. BMIs cap-
ture brain activities associated to mental tasks and external stim-
uli, and realize non-muscular communication and control channel
for conveying messages and commands to the external world [1, 2,
3]. Basically, noninvasive measurement devices such as electroen-
cephalogram (EEG), magnetoencephalogram (MEG), and functional
magnetic response imaging (fMRI) are widely used to observe the
brain activities. Among them, because of its simplicity and low cost,
EEG is a practical measurement device for use in engineering appli-
cations [4, 5].

Efficient decoding around motor-cortex is a crucial technique for
realization of BMI associated with motor-imagery (MI-BMI) [6, 7],
rehabilitation, and so forth. For instance, it is also known that the
real and imaginary movements of hands and feet evoke the change
of the so-called mu rhythm in different brain regions [2, 3]. There-
fore, by accurately capturing these changes features from EEG in the
presence of measurement noise and spontaneous components related
to other brain activities, we can classify the EEG signal associated
with imagination of different motor action such as hand, arm, or foot
movement.

A well-known approach to extract the brain activity for MI-BMI
is the so-called common spatial pattern (CSP) [1, 8, 9]. CSP is a
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set of spatial weight coefficients corresponding to each electrode in
a multichannel EEG. These coefficients are determined from train-
ing data in such a way that the variances of the signal extracted by
the spatial weights differ between two tasks (e.g. left and right hand
movement imageries) as much as possible. These weights can also
regarded as a spatial filter which projects observed EEG signals onto
the optimal space used to classify the observed data to a class cor-
responding to subject’s cerebral status. Several variants of CSP has
been proposed such as common spatio-spectral pattern (CSSP) [10],
spectrally weighted CSP (SPEC-CSP) [11], iterative spatio-spectral
patterns learning (ISSPL) [12], filter bank CSP (FBCSP) [13] and
discriminative filter bank CSP (DFBCSP) [14, 15, 16].

To obtain these spatial patterns, it is necessary to estimate the
covariance matrices of observed signals. To increase the accuracy
of the estimation, usually, EEG signals (training data) are observed
several times (called trials) for the same task, and the covariance
matrices of all trials are simply averaged. However, equally averag-
ing all trials can lead to poor estimation of the covariance matrices
mainly due to the following reasons. First, the feature signal can
be influenced by user’s concentration. Second, the observed EEG
is contaminated by non-stationary artifacts such as eye and muscle
movement. Therefore the covariance matrices at different trials can
differ from each other, although the EEG for the same task should be
(wide-sense) stationary process. Heavily contaminated EEG data,
that we call “low-quality trials” in the rest of this paper, should be
removed from the training data set to design the spatial weights.

In this paper, we propose a new method for detecting and
weighting the low-quality trials by using joint tensor diagonaliza-
tion [17, 18, 19]. We focus on the fact that the standard CSP is
given as a generalized eigenvector of a pair of covariance matrices,
and indeed this idea leads to exact joint matrix diagonalization. To
solve the above problem, we extend this idea to approximate joint
diagonalization of data tensors at trials, where we expect that the
off-diagonal residue with respect to a low-quality trial is large. For
such a trial, a smaller weight is assigned in the weighted average of
covariance matrices over all trials. We formulate this idea as a reg-
ularized joint tensor diagonalization problem and derive an iterative
algorithm to find the solution.

1.1. Notations and Tensor Algebra

The following terminology, notation, and mathematical operations
for tensors (multi-way data) are used throughout the paper [20].

A tensor is defined as a quantity with multiple, usually more
than three indexes. A tensor is denoted by a calligraphic capital letter
e.g., A and the (i1, i2, . . . , iN)-th element of tensor A is denoted by
ai1 ,i2 ,...,iN (1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, . . . , 1 ≤ iN ≤ IN), where in

(n = 1, . . . ,N) is the index of the nth mode.
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An I j-dimensional vector obtained by fixing all modes except
the jth mode is called the fiber of the jth mode. The unfolding ma-
trix of the jth mode is the matrix of size I j by (

∏
k, j Ik) denoted by

A( j) laying all possible fibers of the jth mode. Tensor-matrix mul-
tiplication is introduced as folllows. Suppose a be a fiber vector of
A. Given B of size m by I j, the jth multiplication A × j B is de-
fined as the replacement of all possible fibers a by Ba. Note that
the dimension of the jth mode ofA × j B is m.

The Frobenius norm of a tensor A is defined as ∥A∥2F =∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 |ai1 ,i2 ,...,iN |2. The Matrix Hadamard, Kronecker,

and Khatri-Rao products [20] are denoted by ⊛, ⊗, and ⊙, respec-
tively. Note that given matrices A = [a1,a2, . . . ,aN] ∈ RL×N and
B = [b1, b2, . . . , bN] ∈ RM×N , A ⊙B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,aN ⊗
bN] ∈ RLM×N .

The all-ones vector of size M is defined as 1M
def
= [1, . . . , 1]⊤ ∈

RM .

2. COMMON SPATIAL PATTERN — REVIEW

Let X (k) ∈ RM×N be a matrix consisting of M channel signals with N
samples at kth trial. CSP is given as a spatial weight vector, v ∈ RM ,
minimizing the in-class variance of a signal extracted by linear com-
bination of X (k) [8, 9]. In general, each channel signal in X (k) is
band-limited by a bandpass filter which passes the frequency com-
ponents related to the target brain activity. Denote the components
of X (k) by X (k) = [x(k)

1 , . . . ,x
(k)
N ], where x(k)

n ∈ RM and n is the time
index (n = 1, . . . ,N). The time mean of the observed signal is given
by µ(k) = (1/N)

∑N
n=1 x

(k)
n . Then, the time variance of the extracted

signal of X (k) is given by

σ2(X (k),v) =
1
N

N∑
n=1

|v⊤(x(k)
n − µ(k))|2. (1)

Let C1 and C2 be the training data containing the signals ob-
served at all trials belonging to classes (tasks) 1 and 2, respectively,
such that C1 ∩ C2 = ∅. CSP of class c (c = 1, 2) is given as the
weight vector vc that is the solution of the following optimization
problem [8, 9];

min
v

1
Kc

∑
k∈Cc

σ2(X (k),v), subject to
∑
d=1,2

1
Kd

∑
k∈Cd

σ2(X (k),v) = 1,

(2)
where Kd is the number of elements in class d. In terms of covariance
matrices, (2) can be rewritten as

min
v

v⊤Scv, subject to v⊤(S1 + S2)v = 1, (3)

where Sd, d = 1, 2 is given as

Sd =
1

Kd

∑
k∈Cd

S(k), (4)

and S(k) ∈ RM×M is the sample covariance matrix at trial k given as

S(k) def
=

1
N

N∑
n=1

(x(k)
n − µ(k))(x(k)

n − µ(k))⊤. (5)

Note that the solution of (3) is given by the generalized eigenvector
corresponding to the smallest generalized eigenvalue of the general-
ized eigenvalue problem described as

Scv = λ(S1 + S2)v. (6)

3. SAMPLE WEIGHTING BY JOINT TENSOR
DIAGONALIZATION

Ideally, S(k) is trial- or sample-invariant up to noise. This motivates
the simple arithmetic averaging given as in (4). However, as men-
tioned before, the observed EEG is highly trial-variant even for the
same mental task. Moreover, the measurement environment of EEG
(electronic noise, electrode impedance, etc.) always varies. Thus,
we propose to soften (4) and consider the weighted average defined
as

Ŝd =
∑
k∈Cd

wkS
(k), subject to

∑
k∈Cd

wk = 1, (7)

where wk is the weight coefficient at trial k. Note that, in the CSP,
wk = 1/Kd in the above equation. The main problem of the proposed
method is to find wk that can remove the low-quality trials. To this
end, we focus on the fact that solving (6) is equivalent to joint diago-
nalization for S1 and S2. If the observed EEG is trial-invariant, S(k)

at all trials should be exactly jointly diagonalized. However, as men-
tioned, this assumption is not true. So, we try to find trials prevent-
ing the covariance matrix from being jointly diagonalized and set the
corresponding weight small. To formulate this idea, we exploit the
tensor notation for (6). Define St ∈ RM×M×2 as a tensor such that S1

and S2 are the frontal slices. Define V = [v1, . . . ,vM] ∈ RM×M and
Λ = [λ1,λ2]⊤ ∈ R2×M , where λ1 and λ2 are vectors consisting of
eigenvalues of S1 and S2 respectively. Then, (6) can be rewritten as
a tensor form:

St = I ×1 V ×2 V ×3 Λ, (8)

where I ∈ RM×M×M is the cubic tensor with ones along the super-
diagonal. Note that this is a tensor notation for joint diagonalization
for S1 and S2.

Next, we extend St to a tensor including the covariance matri-
ces of all trials defined as S ∈ RM×M×(K1+K2), which has frontal slices
S(k), k = 1, . . . ,K1 + K2. We can consider the following decomposi-
tion:

S = I ×1 A ×2 B ×3 C + E, A = B, (9)

where A and B ∈ RM×M are arbitrary common factor matrices ,
C ∈ R(K1+K2)×M is an arbitrary matrix and E ∈ RM×M×(K1+K2) is the
residue that has frontal slices E(k), k = 1, . . . ,K1 + K2. This can
be regarded as a tensor diagonalization of S. By adopting (9), we
determine the quality at every trial from information about the error
tensor E. We regard the kth trial data, where ∥E(k)∥2F is greater, as
low-quality trials and impose a smaller weight on it. We define the
weight vector consisting of weights for all trials as

w
def
= [w1, . . . ,wK1 ,wK1+1, . . . ,wK1+K2 ]⊤ ∈ RK1+K2 . (10)

Then, let us consider the following cost function to find the trial
weights;

J1 =
1

2M2(K1 + K2)
∥W ⊛ (S − I ×1 A ×2 B ×3 C)∥2F , (11)

whereW is a tensor representation of w defined as

W def
= 1M ◦ 1M ◦w ∈ RM×M×(K1+K2), (12)

where ◦ denotes the outer product. Assuming that Ŝd in (7) is close
to Sd in (4), we introduce a data-fidelity term;

J2 =
1

2M2

∥∥∥∥∥∥∥
K1+K2∑

k=1

(
1

Kk
− wk

)
S(k)

∥∥∥∥∥∥∥
2

F

,Kk =

K1 (1 ≤ k ≤ K1)
K2 (K1 + 1 ≤ k ≤ K1 + K2)

.

(13)
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Finally, the regularized optimization problem is given as:

min
w,A,B,C

J(w,A,B,C) = J1 + αJ2,

subject to
K1∑
k=1

wk =

K1+K2∑
k=K1+1

wk = 1,
(14)

where α is a regularization parameter.
This optimization problem is solved by the proposed steps.

Step 0. Initialize A, B, and C.

Step 1. For A and B fixed, C = S(3)
{
(B ⊙A)⊤

}†.
Step 2. For A and C fixed, B = S(3)

{
(C ⊙A)⊤

}†.
Step 3. Set A = B.

In these steps, ·† denotes the pseudo-inverse matrix and recall that
S(3) is the unfolding matrix of the 3rd mode ofS. We iterate through
Step 1 to Step 3 until ∥E∥2F in (9) becomes smaller than a certain
value or the fixed maximum number of iteration is reached. After
convergence, we find w. Since cost function J is a quadratic form
with respect to w, the optimal w∗ can be directly found as

w∗ =

(
1

M2(K1 + K2)
De +

α

M2 G

)−1 (
α

M2 GZk + ζ
)
. (15)

See Appendix A for the derivation of Step 1, Step 2, and (15) and
definitions for De, G, Z, k, and ζ.

4. EXPERIMENT OF TWO EEG CLASSIFICATION

We conducted the experiment of classification of EEG signal during
motor imagery to show the performance of the proposed method.
When the proposed method was used for feature extraction of EEG
signals, the weight for trials determined by the proposed method was
used for calculating covariance matrices for the CSP spatial weights.
For comparison, the result of the standard CSP that uses equally av-
eraged covariance matrices is also shown.

As the output of feature extraction using CSP, we defined the
following feature vector. Although the solution of (3) is given by
the eigenvector corresponding to the smallest eigenvalue in (6), we
can use the other eigenvectors for classification [21]. The M eigen-
vectors can be obtained by solving (6) as v̂1, . . . , v̂M , where v̂i is the
eigenvector corresponding to the ith smallest eigenvalue of (6). We
used the 2r eigenvectors to form the feature vector, denoted by y,
for classification of unlabeled data, X:

y = [σ2(X , v̂1), . . . , σ2(X , v̂r), σ2(X , v̂M−r+1), . . . , σ2(X , v̂M)]⊤.
(16)

For classification, y is input to a classifier, linear discriminant anal-
ysis (LDA) [22].

4.1. Data Description

We used dataset IVa from BCI competition III [23], which was pro-
vided by Fraunhofer FIRST (Intelligent Data Analysis Group) and
Campus Benjamin Franklin of the Charité - University Medicine
Berlin (Department of Neurology, Neurophysics Group) [24]. This
dataset consists of EEG signals during right hand and right foot
motor-imageries. The EEG signals were recorded from five subjects
labeled aa, al, av, aw, and ay. 118 EEG channels were measured at
positions of the extended international 10/20-system. The measured
signal was bandpass-filtered with the passband of 0.05–200 Hz, and

Table 1. Classification accuracy [%] given by 5×5 cross valida-
tion. The figure with ± represents the standard deviation (S.D.). In
the proposed method, we show the highest classification accuracy at
each subject among the accuracies obtained with several α.

Subjects aa al av aw ay Ave.
Simple Ave. 75.71 93.57 63.21 97.86 92.86 84.64

(S.D.) ±12.7 ±2.99 ±5.14 ±1.96 ±3.78
Weighted Ave. 80.36 95.36 71.07 97.86 93.57 87.64

(S.D.) ±14.7 ±3.70 ±4.95 ±1.96 ±3.48
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Fig. 1. Classication accuracy for varying regularization parameter,
α, in subject aa, al, av, aw, and ay.

then digitized at 1000 Hz with 16 bits (0.1 µV). During each exper-
iment, visual cues told the subject which imagery task (left hand,
right hand, or right foot) should be performed. The cue was indi-
cated for 3.5 seconds and the subject performed the motor imagery
for this period. The resting interval between two trials was random-
ized from 1.75–2.25 seconds. Only EEG trials for right hand and
right foot were provided.

In this experiment, we furthermore applied to this data a band-
pass filter whose passband is 7-30 Hz and downsampled to 100 Hz.
The dataset for each subject consisted of signals of 140 trials per
class. The signal in each trial is extracted from the period of 3.5
seconds after a visual cue.

4.2. Result

In Table 1, we show classification accuracy in CSP with proposed
method and the standard CSP. In both cases, for the sake of simplic-
ity of comparison, the number of the associated spatial weights, r,
in (16) is fixed to 3. The results were obtained by conducting 5 × 5
cross validation. It should be noted that for av, the proposed method
increases the classification accuracy with the standard CSP by 7.8%.
Figure 1 shows the classification accuracies at each subject to vary-
ing α from 10−10 to 102 order. It is observed that in the parameter’s
range of about 10−10-10−6, the classification accuracy tends to be
high. We can also observe that around 102 the proposed method is
almost identical to CSP. Figure 2 shows an example of the weight co-
efficients for each trial in subject av. We can observe that the weight,
wk, approach 1/Kk as α becomes greater.
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Fig. 2. Weight coefficients of subject av

It should be emphasized that the proposed method can be applied
to the variants of CSP. Therefore, we applied the proposed method
to the standard CSP in this experiment for the sake of simplicity.

5. CONCLUSION

In this paper, utilizing joint tensor diagonalization, we proposed the
novel method that selects or weights trials to accurately find CSP.
The experimental results have suggested that the proposed averaging
method with CSP is effective in classification of the MI-BMI.

A. DERIVATION OF THE UPDATE EQUATIONS

The Lagrangian Ĵ of (14) is given as

Ĵ = J1 + αJ2 + β

1 − K1∑
k=1

wk

 + γ
1 − K1+K2∑

k=K1+1

wk

 , (17)

where β and γ are Lagrange multipliers. The update equation in Step
1 is derived as follows. The first term of (17) is modified as

J1 =
1

2M2(K1 + K2)
∥W ⊛ (S − I ×1 A ×2 B ×3 C)∥2F

=
1

2M2(K1 + K2)
tr

[{
W(3) ⊛ S(3) −W(3) ⊛C(B ⊙A)⊤

}
× {

W(3) ⊛ S(3) −W(3) ⊛C(B ⊙A)⊤
}⊤]

=
1

2M2(K1 + K2)
tr

[(
W(3) ⊛ S(3)

) (
W(3) ⊛ S(3)

)⊤
−2

(
W(3) ⊛ S(3)

) {
W ⊤

(3) ⊛ (B ⊙A)C⊤
}

+
{
W(3) ⊛C(B ⊙A)⊤

} {
W ⊤

(3) ⊛ (B ⊙A)C⊤
}]
,

(18)

where tr[·] denotes the trace of a matrix. By using the above equa-
tion, the differentiation of Ĵ with respect to C is given as

δĴ =
1

2M2(K1 + K2)
tr

[
−2

(
W(3) ⊛ S(3)

) {
W ⊤

(3) ⊛ (B ⊙A)δC⊤
}

+
{
W(3) ⊛ δC(B ⊙A)⊤

} {
W ⊤

(3) ⊛ (B ⊙A)C⊤
}

+
{
W(3) ⊛C(B ⊙A)⊤

} {
W ⊤

(3) ⊛ (B ⊙A)δC⊤
}]

=
1

2M2(K1 + K2)
tr

[
−2(W(3) ⊛ S(3))

{
W ⊤

(3) ⊛ (B ⊙A)δC⊤
}

+2
{
W(3) ⊛C(B ⊙A)⊤

} {
W ⊤

(3) ⊛ (B ⊙A)δC⊤
}]

=
1

M2(K1 + K2)
tr

[{
W(3) ⊛C(B ⊙A)⊤ −W(3) ⊛ S(3)

}
×

{
W ⊤

(3) ⊛ (B ⊙A)δC⊤
}]
.

(19)

Thus, setting the above formula equal to zero, we obtain a following
equation:

W(3) ⊛
{
S(3) −C(B ⊙A)⊤

}
= 0. (20)

From the above equation, we obtain C in Step 1. Indeed, this
derivation is similar to the individual differences in scaling (IND-
SCAL) [18, 19]. The update equation in Step 2 is proved as well as
Step 1.

The equation (15) is proved as follows. Again, (17) becomes

Ĵ =
1

2M2(K1 + K2)
∥W ⊛ E∥2F +

α

2M2

∥∥∥∥∥∥∥
K1+K2∑

k=1

(
1

Kk
− wk

)
S(k)

∥∥∥∥∥∥∥
2

F

+ β

1 − K1∑
k=1

wk

 + γ
1 − K1+K2∑

k=K1+1

wk


=

1
2M2(K1 + K2)

K1+K2∑
k=1

w2
k∥E(k)∥2F

+
α

2M2

K1+K2∑
k=1

K1+K2∑
l=1

(
1

Kk
− wk

) (
1
Kl
− wl

)
tr

[
S(k)S(l)⊤

]
+ β

1 − K1∑
k=1

wk

 + γ
1 − K1+K2∑

k=K1+1

wk

 . (21)

Define

De = diag
[∥∥∥E(1)

∥∥∥2

F
, . . . ,

∥∥∥E(K1+K2)
∥∥∥2

F

]
∈ R(K1+K2)×(K1+K2),

G =


tr

[
S(1)S(1)⊤

]
· · · tr

[
S(1)S(K1+K2)⊤

]
...

. . .
...

tr
[
S(K1+K2)S(1)⊤

]
· · · tr

[
S(K1+K2)S(K1+K2)⊤

]
∈ R(K1+K2)×(K1+K2),

Z =

[
1K1 0
0 1K2

]
∈ R(K1+K2)×2, k =

[
1/K1

1/K2

]
∈ R2, and ζ =

[
β
γ

]
∈ R2.

Considering the properties of the trace and a covariance matrix, we
can easily show that G is a real symmetric matrix. With De, G, k,
and ζ, (21) can be rewritten as follows:

Ĵ =
1

2M2(K1 + K2)
w⊤Dew +

α

2M2
(w −Zk)⊤G (w −Zk)

−w⊤Zζ + β + γ. (22)

The gradient of Ĵ, is obtained as

∂Ĵ
∂w
=

1
M2(K1 + K2)

Dew +
α

M2 G(w −Zk) −Zζ. (23)

Setting the above formula equal to zero, we obtain (15). The con-
straints given in (14) is rewritten as Z⊤w = 12, which yields with
(15), Lagrange multipliers β and γ are found as follows:

12 = Z⊤w = Z⊤(HZK12 + FZζ). (24)

It follows that

ζ = (Z⊤FZ)−1(I −Z⊤HZK)12, (25)

where F , H , and K are defined as

F =

(
1

M2(K1 + K2)
De +

α

M2 G

)−1

∈ R(K1+K2)×(K1+K2),

H = FG ∈ R(K1+K2)×(K1+K2), and K =
α

M2

[
1/K1 0

0 1/K2

]
∈ R2×2.
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