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ABSTRACT

In this paper, we propose the use of compressed sensing (CS)
that is preceded by an energy-efficient, cross-product based
independent component analysis (ICA) preprocessing method
to efficiently compress electroencephalogram (EEG) signals
in the context of a wireless body sensor network (WBSN).
In WBSNs, the battery life puts a strict energy constraint at
each sensor node. By providing a simple, nonadaptive com-
pression scheme at the sensor nodes, CS offers an efficient
solution to compress EEG signals in WBSNs. Through sim-
ulations, we demonstrate that our method requires less en-
ergy than other state-of-the-art methods using ICA, with a re-
duction in computations that can reach up to 94%. We also
demonstrate that for a fixed compression ratio, the achievable
reconstruction error is similar to the state-of-the-art method
using ICA, and is much lower than when CS is used alone.

Index Terms— Compressed sensing (CS), Independent
component analysis (ICA), Wireless body sensor network,
Electroencephalogram (EEG)

1. INTRODUCTION

In recent years, telemedecine has been gaining popularity
around the world. Solutions are sought to mitigate the current
trend of increasing healthcare costs, and telemedecine is one
such solution [1]. Wireless body sensor networks (WBSNs)
are at the heart of many telemedicine applications. Through
various wireless sensor nodes located on the patient’s body,
different physiological signals are acquired. The aim is to
utilize these signals to assess different medical conditions
[2]. One such signal of interest is the electroencephalogram
(EEG), which non-invasively measures the electrical activity
from the brain. Such signals can then be used for different
purposes such as detecting and predicting seizures [3], assess-
ing sleep patterns [4], controlling a brain computer interface
[5], and many others.

The main advantages of WBSNs are that they are non-
invasive and are less cumbersome for the patient to wear (as
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compared to their wired counterparts). However, the main
challenge in these applications is that the energy supply at the
sensor nodes is limited. This forms a particularly important
problem in the case of EEG due to the huge amount of data.
It is not uncommon to have 10 EEG channels or more, each
sampling at 100Hz at the very least. This significant amount
of raw data must then be transmitted wirelessly. Therefore,
finding an appropriate compression algorithm that could sub-
sample the acquired EEG data at the sensor nodes while still
maintaining the relevant features is an important challenge.
This has to be done using a minimal amount of computations
at the sensor node level due to the sensor’s energy limitation.

In recent years, compressed sensing (CS) has gained pop-
ularity as a lossy compression scheme that can non-adaptively
sample and compress signals at a rate much lower than the
Nyquist frequency. In a nutshell, if a signal can be sparsely
represented by some basis (i.e., if it can be well represented
by a small number of coefficients), then a small number of
random projections, roughly proportional to the information
rate of the signal, is sufficient to recover the signal exactly.
The theory extends to compressible signals (where the signal
has many very small coefficients in some basis), although in
this case the reconstruction is not exact [6].

CS is an interesting paradigm in the case of WBSN since
it requires very simple computations at the sensor nodes (non-
adaptive random projections) where the signals are acquired
and compressed. In WBSNs, we generally place no limitation
on the energy consumption (and computational power) of the
server, whereas the sensor nodes are heavily constrained both
in terms of energy available and computational power.

Aviyente was the first to investigate the potential of CS
as applied to EEG signals [7]. While she obtained good re-
sults through the use of a distributed CS reconstruction al-
gorithm (where all channels are reconstructed at once), these
results were based on the compression of EEG signals coming
from multiple trials (asking a patient to repeat the same task
many times and recording the EEG signals each time). This
setting is of no interest in telemedicine applications, where
the patient is usually not prompted to act in a certain way or
to repeat the same task multiple times. To the best of our
knowledge, Abdulghani et al. were the first to look at CS
for the compression of EEG signals in telemedicine ([8]-[9]).
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In their work, they surveyed different sparsifying bases and
reconstruction algorithms, coming to the conclusion that the
applicability of single-channel CS for EEG signals depends
on the final application and the tolerable reconstruction er-
ror. More recently, Mijovic et al. proposed to apply Inde-
pendent Component Analysis (ICA) as a preprocessing step
prior to using CS for the compression of EEG signals in new-
born babies [10]. They obtained compression results superior
to what others not using ICA preprocessing previously ob-
tained. Their system however is not suitable for telemedicine
applications since it is energy hungry at the sensor nodes (be-
cause of the selected CS measurement matrix and the ICA
algorithm). They also applied it on neonatal EEG signals,
which are arguably simpler than adult EEG. In this paper, we
propose a framework that is suitable for a low-energy, power-
efficient telemedicine application. Through the development
of a power-efficient ICA algorithm and architecture and by
adapting the CS scheme to reduce the load at the sensor nodes,
we are able to improve the energy efficiency at these nodes
and at the same time achieve similar EEG compression re-
sults as those achieved by Mijovic et al.

This paper is organized as follows. Section 2 presents the
different building blocks of the framework. Section 3 shows
the performance of the system through different experiments.
Section 4 discusses the obtained results, while Section 5 con-
cludes the paper.

2. METHODS

The proposed framework for compressing EEG signals is
composed of two blocks: the ICA preprocessing block, fol-
lowed by the compressed sensing one. In our framework,
compressed sensing is applied to the derived independent
components directly.

2.1. Energy Efficient ICA

ICA has been around for close to two decades now and was
proposed as a solution to the blind source separation problem.
The solution to the problem is found by enforcing statistical
independence of the source signals, commonly through max-
imizing the non-Gaussianity of the signals or through mini-
mizing the mutual information of the signals [11]. ICA has
also been successfully applied to EEG signals (see, for exam-
ple, the study conducted by Makeig et al. [12]). The under-
lying basis as to why ICA works in the EEG case is that the
electrical scalp potential measured by an EEG electrode can
be seen as a mixture of a smaller number of ‘sources’ located
in the brain that give rise to these potentials.

The ICA problem can be formulated as X = AS, where
X is a matrix containing the measured mixed signals (each
column containing one mixed signal), A is the mixing ma-
trix, andS is a matrix containing the independent components

(one source per column). The task is to find A and S from
the observable measurementsX .

FastICA (FICA) is a popular algorithm that can solve this
problem [12]. Summarizing the FICA algorithm:

1. Preprocessing: Whiten (decorrelate) the mixed signals.

2. Iteration: In a deflationary manner (i.e. one at a time),
estimate each independent component (IC) by maxi-
mizing its non-Gaussianity through a contrast function.
Using Gram-Schmidt, orthogonalize the found IC with
respect to the previously found ICs, and normalize it.
Repeat this stage until the component converges.

However, this algorithm is computationally intensive and
thus not suitable for WBSN applications. Acharyya et al.
proposed an algorithm and an energy-efficient architecture to
calculate n-dimensional (nD) cross-products, and mentioned
that one potential application is FICA [13]. After identifying
n − 1 components with FICA, the nth component can sim-
ply be identified by taking the cross-product of the first n− 1
components since at that point, the direction for maximal in-
dependence has already been determined. We call this method
xFICAnD. This allows the saving of one full iteration cycle,
which is not negligible.

2.2. Compressed Sensing

Consider a signal f of length N , and a dictionary ΨN×S =
[ψ1ψ2 . . .ψS ], where eachψi, i = 1 . . . S is a column vector
of length N and corresponds to one basis vector (or atom) of
Ψ. Therefore, there are S atoms in the dictionary. Vector
f can be represented as a linear combination of the atoms
of Ψ: f =

∑S
j=1 αjψj , where the αj’s are the weights for

each dictionary atom ψj . Alternatively, we can represent it
in vector matrix form as follows: f = Ψα, where αS×1 is
a column vector containing the coefficients αj . Vector f is
said to be K-sparse in basis Ψ if only K coefficients (αj)
are non-zero, where K � N (i.e. it takes very few atoms to
perfectly represent the original signal in that basis).

CS exploits the fact that most signals have a sparse rep-
resentation in some basis to directly acquire a small number
of samples M (M � N ), roughly in proportion to the infor-
mation rate (the sparsity, K) of f . This acquisition is done
through a measurement matrix ΦM×N applied to f , yielding
a measurement vector yM×1 as follows:

y = Φf = ΦΨα. (1)

The number of measurements M is linked to the sparsity
K of the signal but also to the degree of coherence between
Φ and Ψ, where coherence is measured by

µ(Φ,Ψ) =
√
N · max

1≤l,j≤N
|〈φl, ψj〉|. (2)

The number of required measurements M is then bounded by

M ≥ C · µ2(Φ,Ψ) · S · logN, (3)
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where C is a positive constant [14]. What this means is that
it is beneficial to pick a matrix Φ which is maximally inco-
herent with Ψ. In an ideal scenario, it would be best to pick a
matrix Φ non-adaptively, i.e. it does not depend on the spar-
sifying matrix Ψ. It can be shown that random matrices are
maximally incoherent with any sparsifying basis with over-
whelming probability [15].

Typically, CS uses a matrix built with entries that are in-
dependent and identically distributed Gaussian random vari-
ables. However, such a matrix is not convenient for WBSN
because it is not easy to generate on cheap hardware and is
computationally intensive to construct. Instead, we pick a
sub-optimal matrix: a sparse binary sensing matrix. This ma-
trix contains d 1’s in each column (where d is determined ex-
perimentally, and the location of the 1’s is chosen randomly),
and the rest of the entries are zeros. While it is not possi-
ble to prove that such a matrix is maximally incoherent with
any sparsifying basis, it can be shown experimentally that the
degradation in performance (as compared to using an opti-
mal matrix) is negligible, while the computational gains are
important [16]. In this work, we selected d = 8, as it was ver-
ified experimentally that 1) this matrix behaves very closely
to an optimal matrix, and 2) using a higher number of nonzero
elements does not lead to better reconstruction.

Because M � N , (1) is largely underdetermined, im-
plying that there is an infinite number of solutions for f (or
α, equivalently). However, because we know that the signal
to recover is sparse, the correct solution is often the sparsest
one. This can be formulated as the following optimization
problem:

argminα‖α‖0 such that y = ΦΨα (4)

where ‖ · ‖0 is the seminorm which counts the number
of nonzero entries in a given vector. However, (4) is known
to be NP-hard. Instead, we replace the `0 norm by the `1
norm. This problem was shown to be equivalent to (4) un-
der some conditions (refer to [6]), and it has the advantage of
being convex (and thus tractable). In this work, we chose to
use the SPGL1 algorithm, for its convergence guarantees and
since it requires fewer measurements than greedy algorithms
to achieve perfect reconstruction (which implies higher com-
pression) [17].

To pick Ψ, we rely on the literature. In a previous work,
EEG signals were shown to be sparse in a redundant Gabor
dictionary [7]. Therefore, an optimal, stochastic Gabor dictio-
nary was built as per [18] to be used as the sparsifying basis.
Each atom has length N = 512 (4 seconds of data sampled at
128Hz).

2.3. Data Used

We randomly selected 50 epochs of 512 samples from dataset
# 1 of BCI Competition IV. This data was recorded from
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Fig. 1: Normalized mean square error (NMSE) as a function of the
compression ratio for regular compressed sensing (CS), state-of-the-
art from [10], and our method.

healthy adults performing a motor imagery task [19]. We se-
lected 12 channels in the sensorimotor area of the cortex: F1,
FZ, F2, FC3, FC1, FCZ, FC2, FC4, C3, C1, CZ, C2.

3. RESULTS

3.1. Experiment 1: Compression and Reconstruction
Performance

In this experiment, we wish to test the compression and re-
construction performance of 1) CS alone (i.e. the raw EEG
data is processed by CS only), 2) our method (i.e. the raw
EEG data is first preprocessed by xFICA before applying CS),
and 3) the method presented in [10] (i.e. the raw EEG data
is first preprocessed by SOBI before applying CS). We thus
vary the number of independent components retained as well
as the number of measurements M and we compute the re-
construction error, in terms of the normalized mean square er-
ror (NMSE), against the compression ratio (defined as CR =
N/M ) where N is the number of raw EEG samples in each
epoch (512 in our case). To keep the comparison fair, we
must include the mixing matrix entries in the total number of
measurements when ICA is used, and we must ensure that the
same total number of measurements is used for all methods
(thus ensuring a constant compression ratio).

The results are shown in Figure 1. In Figure 2, we show
a slice from Figure 1 by selecting a compression ratio of 5:1
and showing the reconstruction error for each block when we
vary the number of independent components.

3.2. Experiment 2: Energy Analysis

We now wish to compare the energy performance of the state-
of-the-art ICA used in [10] and xFICA. To do so, we modify
the numerical complexity models of [20] and then calculate
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Table 1: FLOPS comparison between xFICA and [10]

Number of ICs IOC (xFICA) IOC ([10]) FLOPS (xFICA) FLOPS ([10]) % FLOPS saved
3 22.36 3.56 2.18 · 105 3.82 · 106 94.29%
4 38.26 4.62 6.23 · 105 3.90 · 106 84.02%
6 77.74 6.42 2.97 · 106 4.25 · 106 30.28%
8 118.68 7.63 8.40 · 106 4.98 · 106 -68.45%
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Fig. 2: NMSE for the 50 epochs (in decreasing order of magnitude)
when the compression ratio is 5:1.

the number of FLOPS (F) required for both algorithms:

FSOBI = DNC2/2 + 4C3/3 + (D − 1)C3/2 + IOCSOBI·
I2[4I(D − 1) + 17(D − 1) + 4I + 75]/2

FxFICA = NC2/2 + 4C3/3 + ICN + IOCxFICA·
[2(I − 1)(I − 1 +N) + 5N(I − 1)2/2]+

I + I(I − 1)3

where N is the epoch length (512), C the number of chan-
nels (12), I the number of independent components used, D
the number of delay lags used for SOBI (we used D = 100,
as recommended by the authors of [21]), and IOC{SOBI, xFICA}
are the number of iterations for convergence of each algo-
rithm, respectively. To find the IOC values of both algorithms,
we took the mean number of iterations over the 50 signals.
The results are shown in Table 1.

4. DISCUSSION

As can be seen from Figure 1, adding an ICA preprocessing
step decreases the NMSE for a fixed compression ratio (or, al-
ternatively, it allows for an increase in the compression ratio
for a fixed RMSE), with our method and the state-of-the-art
yielding statistically similar results. In Figure 2, we can see
that apart for two epochs for eight ICs, using an ICA pre-
processing step systematically yields better results than using

CS alone. Of course, selecting fewer independent compo-
nents has advantages both in terms of compression ratio and
speed (since fewer sources need to be reconstructed). Our ex-
periments also suggest that even a small number of ICs (e.g.
three or four) are able to accurately represent the original sig-
nal. However, one must be careful to keep enough ICs so that
the variance of the data is preserved. Indeed, keeping less
than three ICs makes it impossible to reconstruct the original
signal faithfully.

Table 1 demonstrates that when the number of ICs is six or
less, our proposed xFICA requires less FLOPS than the ICA
used in [10], with the savings being more important as the
number of ICs decreases. This measure is analogous to en-
ergy consumption (it is roughly proportional) since the num-
ber of FLOPS required is a measure of the dynamic power
consumption. Reducing that value has the effect of reducing
the overall power consumption.

5. CONCLUSION

This paper addresses the problem of efficiently compressing
EEG signals in wireless body sensor network applications,
where efficiency is measured in terms of compression ratio,
reconstruction accuracy, and energy consumption. It proposes
the use of compressed sensing after preprocessing the raw
data with an energy-efficient independent component anal-
ysis method. It was demonstrated that our system provides
significant energy savings as compared to the state-of-the-art
method, which also uses an ICA preprocessing block. De-
pending on the number of independent components selected,
our system can achieve up to 94% fewer computations than
the state-of-the-art. As well, for a fixed compression ratio,
our system achieves similar RMSE performance as the state-
of-the-art method, which is much better than that achieved
by CS only. In the future, it would be interesting to explore
more powerful reconstruction algorithms that would fully ex-
ploit the intra- and inter-correlation in EEG signals, so as to
further increase the compression ratio.
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