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ABSTRACT
We consider the problem of dipole source signals estima-
tion in electroencephalography (EEG) using beamforming
techniques in ill-conditioned settings. We take advantage of
the link between the linearly constrained minimum-variance
(LCMV) beamformer in sensor array processing and the
best linear unbiased estimator (BLUE) in linear regression
modeling. We show that the recently introduced reduced-
rank extension of BLUE, named minimum-variance pseudo-
unbiased reduced-rank estimator (MV-PURE), achieves much
lower estimation error not only than LCMV beamformer, but
also than the previously derived reduced-rank principal com-
ponents (PC) and cross-spectral metrics (CSM) beamformers
in ill-conditioned settings. The practical scenarios where the
considered estimation model becomes ill-conditioned are dis-
cussed, then we show the applicability of MV-PURE dipole
source estimator under those conditions through realistic
simulations.

Index Terms— MV-PURE estimator, reduced-rank esti-
mation, dipole source signal, electroencephalography, sensor
array processing

1. INTRODUCTION

In recent years, beamforming techniques have found ap-
plications in processing signals originating from electroen-
cephalographic (EEG) and magnetoencephalographic (MEG)
sensor arrays. In particular, the celebrated linearly con-
strained minimum-variance (LCMV) beamformer (recently
also called as multiple constrained minimum-variance beam-
former in brain signal processing) has often been used as ref-
erence for new beamforming methods in EEG/MEG source
signal estimation (see e.g. [1–4] and references therein),
which is the problem we are interested in this paper.

An important aspect of LCMV beamforming is its inter-
pretation in terms of the celebrated best linear unbiased es-
timator (BLUE), also known as the Gauss-Markov estima-
tor [5, 6], which is widely used in linear regression models
for the estimation of an unknown deterministic vector of pa-
rameters. In this framework, it is well-known that enforc-
ing unbiasedness is inherently inadequate in ill-conditioned
and/or highly noisy settings, as it leads to huge variance of
the obtained estimate. On the other hand, the reduced-rank
approach provides significant gain in performance in such set-
tings, as it introduces a small amount of bias in exchange for
large savings in variance [7–10].

Here we show that a model for EEG dipole source signals
estimation may be naturally interpreted in the linear regres-
sion framework. This opens the possibility of using robust
reduced-rank estimators developed for the linear regression
model in dipole source estimation. In particular, the numer-
ical simulations contained in this paper indicate that closely

positioned and correlated dipole sources which may be lo-
cated in areas of low sensor sensitivity yield ill-conditioned
estimation models, which is in line with known theoretical
results (see e.g. [1] and references therein). Thus, there is
a great need to introduce efficient reduced-rank estimation
methods for such settings in EEG source signals estimation,
which is the main contribution of this paper.

The proposed solution for such settings is the recently in-
troduced minimum-variance pseudo-unbiased reduced-rank
estimator (MV-PURE), which in terms of linear regression
model is defined as a closed form solution of a hierarchi-
cal non-convex constrained optimization problem [9, 10].
MV-PURE achieves minimum variance among all solutions
of the first stage optimization problem for simultaneously
minimizing, under a rank constraint, all unitarily invariant
norms of an operator applied to the unknown parameter vec-
tor in view of suppressing bias. These properties ensure
that, among reduced-rank estimators of a predefined rank,
the MV-PURE estimator has minimum variance among those
with least possible bias. Moreover, compared with Tikhonov
regularization-based methods [11], it does not require sophis-
ticated or application-specific algorithms for finding optimal
value of the regularization parameter [12, 13]. Instead, only
discrete-valued rank of MV-PURE needs to be determined,
and efficient implementation of a rank-selection criterion
minimizing unbiased estimate of the predicted-MSE of MV-
PURE is proposed in [14].

Therefore, the aim of this work is to show that MV-PURE
achieves significantly lower estimation error in reconstructing
dipole source signals in EEG for ill-conditioned settings not
only than LCMV beamformer, but also than principal compo-
nents (PC) and cross-spectral metrics (CSM) beamformers, in
which rank-reduction is implemented to replace the covari-
ance matrix of the filtered observed signal by its reduced-
rank approximations [3]. The numerical examples are per-
formed with realistically simulated EEG measurements ob-
tained through boundary element method (BEM)-based mod-
eling (see [15, Section IV] for in-depth description and deriva-
tion of this model) using the Helsinki BEM library [16], and
with an uniformly distributed EEG sensor array conforming
to the 5-10 sensor placing system, thus ensuring the repro-
ducibility of the results.

The paper is organized as follows: in Section 2 we in-
troduce the EEG measurement model considered, and we
demonstrate its close relation with linear regression model.
Then, in Section 3 we show how MV-PURE estimator can
be interpreted in terms of the EEG model, then we discuss
its benefits in such settings. In Section 4 we show the ap-
plicability of MV-PURE through numerical examples using
realistically simulated EEG data. We close with Section 5
where conclusions are drawn and areas of future research are
discussed.

968978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



2. PRELIMINARIES

We consider the case of measuring potentials over the scalp
produced byL dipole sources using an array ofm sensors. We
assume that the sources change in time, but remain at the same
position θ during the measurement period t = 1, 2, . . . , N.
This assumption holds in practice for evoked response and
event-related experiments [3, 17]. Then, the m × N spatio-
temporal data matrix Y for a given trial can be modeled as

Y = A(θ)Q+ E, (1)

where A(θ) is the m × 3L array response matrix, Q is the
3L × N matrix of dipole moments, and E is the noise ma-
trix of spatially correlated background activity approximated
by zero-mean random dipoles representing spontaneous brain
activity [18]. The array response matrix can be calculated
through BEM in the case where the head is approximated
with a realistic geometry and for a known θ. This forward
solution of generating EEG measurements has already been
implemented in the Helsinki BEM library [16].

In this paper we consider the problem of dipole source
signals estimation with fixed dipole locations, and look into
beamforming methods which use two elements to estimate Q
based on Y : the array response matrix A(θ) which is avail-
able by design of the EEG forward problem, and the noise
covariance matrix R, which is generally unknown but can be
estimated from the observed data. We assume that the total
time samples N is larger than the number of sensorsm which
ensures that the covariance matrix is positive definite.

Model (1) represents, from a statistical modeling view-
point, a linear regression model used for estimation of an un-
known deterministic parameter Q in the presence of additive
noise E, then the aim is to estimate Q based on observa-
tions Y in a linear fashion:

Q̂ := ΦY, (2)

where we call the constant matrix Φ ∈ R3L×m an estimator,
and Q̂ denotes an estimate of Q. In fact, (1) can be seen as a
linear regression model where A(θ) corresponds to its model
matrix of full column rank 3L.

Under those conditions, the BLUE estimator (denoted by
ΦBLUE) minimizes the variance of its estimate subject to the
condition ΦBLUEA(θ) = I3L and is defined as the solution
of the following optimization problem [5, 6, 9, 10]:{

minimize tr
[
ΦRΦT

]
subject to ΦA(θ) = I3L,

(3)

with the corresponding solution given by

ΦBLUE := (A(θ)TR−1A(θ))−1A(θ)TR−1. (4)

In array signal processing, the optimization problem (3)
with its unique solution (4) for a linear model (1) is equiva-
lent to the LCMV beamformer, whose spatial filtering proper-
ties for localization and estimation of brain electrical activity
have been previously demonstrated [1–4]. However, it can
be easily observed that requirement of a unit response in the
pass band, which corresponds to the condition ΦA(θ) = I3L
in (3), leads to huge variance tr

[
ΦRΦT

]
if A(θ)TR−1A(θ)

is ill-conditioned, i.e., if it possesses some vanishingly small
singular values (which, in our settings, are equal to the eigen-
values as A(θ)TR−1A(θ) is positive definite). Unsurpris-
ingly, this is also a recurrent problem in estimation in linear

regression, as the equality ΦA(θ) = I3L leads to uniform un-
biasedness of the estimate, which is inherently inadequate in
ill-conditioned settings. From the point of view of either the
array signal processing or the estimation in linear regression,
the same core problem is observed: if we set an eigenvalue
decomposition (EVD) of A(θ)TR−1A(θ) as

EVD{A(θ)TR−1A(θ)} = V ΣV T , (5)

such that the eigenvalues are organized in nonincreasing
order, then inserting (4) into (3) reveals that the variance
of BLUE estimator (and hence, LCMV beamformer) is ex-
pressed as

tr
[
ΦBLUERΦTBLUE

]
=

3L∑
i=1

1

σi
, (6)

where σi, i = 1, . . . , 3L are eigenvalues of A(θ)TR−1A(θ).
Thus, if the trailing eigenvalues σr+1, . . . , σ3L for some r <
3L are vanishingly small, the resulting variance (6) will be
huge.

In terms of model (1) considered in this paper, ill-
conditioning occurs when the dipole sources are close to each
other, specially when they are located far from electrodes,
which is consistent with theoretical results (see e.g. [1] and
references therein). Therefore, there is great need to intro-
duce a solution that improves the performance compared to
classical LCMV approach in such settings, and we propose
such a solution next.

3. MV-PURE ESTIMATOR FOR DIPOLE SOURCE
SIGNALS ESTIMATION IN EEG

The reduced-rank approach has been in continuous use since
early seminal papers [7, 8], and it has been employed in lin-
ear estimation under linear regression model to combat ill-
conditioning by introducing small amount of bias (induced
by rank-reduction) in exchange for huge savings in variance.
Recently, the minimum-variance pseudo-unbiased reduced-
rank estimator (MV-PURE) has been introduced as the op-
timal extension of BLUE approach (3) to the reduced-rank
case [9,10]. Namely, the MV-PURE estimator (without linear
constraints) is defined as the solution of the following opti-
mization problem, for a given rank constraint r ≤ 3L: minimize tr

[
ΦrRΦTr

]
subject to Φr ∈

⋂
ι∈I

Pιr, (7)

with

Pιr = arg min
Φr∈X 3L×m

r

‖ ΦrA(θ)− I3L ‖2ι , ι ∈ I, (8)

and

X 3L×m
r := {Φr ∈ R3L×m : rank(Φr) ≤ r ≤ 3L}, (9)

where I is the index set of all unitarily invariant norms, i.e.,
norms satisfying ‖ UXV ‖ι=‖ X ‖ι for all orthogonal U ∈
Rk×k, V ∈ Rn×n and allX ∈ Rk×n [19]. Then, the solution
to problem (7) for a given rank constraint r ≤ 3L is given
by [10]

ΦrMV−PURE = VrV
T
r ΦBLUE , (10)
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where V = (v1, . . . , v3L) with Vr = (v1, . . . , vr) with the
resulting projection matrix VrV Tr , and where ΦBLUE is of
the form (4).

In comparison to the full-rank case, it is not possible
to enforce unit response in the pass band, as the equality
ΦrA(θ) = I3L cannot be achieved if r < 3L. Nevertheless,
the closest approximation may be obtained in the reduced-
rank case by minimizing (8) simultaneously in terms of all
unitarily invariant norms, as it is done for the MV-PURE
estimator. Then, the minimum-variance solution is chosen
among those satisfying conditions (8), which results in a
natural extension of the full-rank approach (3) to the reduced-
rank case (7). The benefits of the reduced-rank approach
by MV-PURE estimator in ill-conditioned settings can be
observed as follows: let us assume that last 3L − r eigenval-
ues σr+1, . . . , σ3L of A(θ)TR−1A(θ) are vanishingly small.
Then, by choosing MV-PURE estimator of rank r it can be
easily verified that its variance is equal to

tr
[
ΦrMV−PURER(ΦrMV−PURE)T

]
=

r∑
i=1

1

σi
, (11)

which is much smaller than of the full rank BLUE estima-
tor, as it completely avoids the impact of the trailing 3L − r
eigenvalues which are an issue in (6). The penalty paid for the
possibly huge savings in variance results in a minimum possi-
ble deviation from unit response in the pass band (among the
estimators of rank r) thanks to condition (8).

Therefore, the same motivation for the use of MV-PURE
works in the case of spatial filtering in array signal process-
ing, in particular for dipole source signals estimation in EEG
under model (1), as well as in estimation under linear regres-
sion model [9, 10]. We believe thus that MV-PURE could be
established as a highly competitive solution also in such set-
tings, and we demonstrate the validity of this claim through
numerical examples in the next section.

4. NUMERICAL EXAMPLES

In the following simulations, we consider the solution through
BEM of the forward problem in EEG using a realistic head
model, then we evaluate the performance of LCMV and MV-
PURE beamformers. In our simulations, we estimated R by
its finite sample estimate. The EEG data was generated using
an array ofm = 87 sensors uniformly distributed over surface
of the head model.

Furthermore, we considered the case of two dipoles lo-
cated at positions p1 = [8.7, −87.0, 28.9]T mm and p2 =
[29.3, −37.1, 67.9]T mm, with a common interferer located
between them at p3 = [14.0, −74.9, 48.9]T mm, then our
problem corresponded to the estimation of L = 3 sources.
The dipole source components were defined as Q = Xq(t),
where X ∈ R9×3 is of the form

X =



0.7 0 0
0 0.7 0
0 0 0
0 0.3 0
0 0 0

0.7 0 0
0 0 0.7
0 0 0
0 0 0.5


, (12)

where q(t) = [q1(t), q2(t), q3(t)]T contains dipole basis

functions allowed to change in time according to

q1(t) = 10 exp(− (t−100)2

112 )− 5 exp(− (t−80)2

172 )

q2(t) = 5 exp(− (t−80)2

82 )− 10 exp(− (t−100)2

112 )

q3(t) = 10 sin(0.06πt)

(13)

with units of [nA m] and t in milliseconds. Note that from
(12) and (13) we obtain the source components of two cor-
related dipoles plus a common interferer, which are given
by [0.7 q1(t), 0.7 q2(t), 0]T , [0.3 q2(t), 0, 0.7 q1(t)]T , and
[0.7 q3(t), 0, 0.5 q3(t)]T , and are located at positions p1, p2,
and p3, respectively. The signals were sampled every 0.33
ms for duration of 100 ms, thus obtaining N = 300 sam-
ples. Similar models have been used in previous research (see
e.g. [3] and references therein) as they approximate a typical
evoked response.

Next, the EEG measurements were generated using the
Helsinki BEM library with a head model composed by three
tesselated meshes which were nested one inside the other in
order to approximate the geometry of the scalp, skull, and
brain. Each volume was given a homogeneous conductiv-
ity of 0.33, 0.0041, and 0.33 S/m, respectively. Finally, to
approximate realistic spatially correlated noise, we generated
400 random dipoles in order to model spontaneous brain ac-
tivity [18]. The signal-to-noise ratio (SNR) was defined as

SNR[dB] = 10 log10

‖ AQ ‖F
‖ E ‖F

, (14)

and the noise power was set in order to obtain SNR[dB] levels
of 3,5,7,9. We averaged the results over 1000 independent
noise realizations.

Under these conditions, we were able to simulate an ill-
conditioned estimation problem, with large condition number
of the matrix A(θ)TR−1A(θ) for a given estimate of noise
covariance matrix R. In particular, the average spread of sin-
gular values of A(θ)TR−1A(θ) suggested that we may ob-
tain a significant gain in performance by lowering the rank of
MV-PURE to r = 8 from the full rank 3L = 9.

In order to compare the performance of the proposed
method, we included the evaluation of LCMV beamformer
implemented as generalized sidelobe canceller of full-rank
(GSC), PC and CSM beamformers as indicated in [3]. Fur-
thermore, using the fact that in this particular example third
coefficient of first dipole, second coefficient of second dipole,
and second coefficient of third dipole are all zero for dura-
tion of trial, we introduced the linearly constrained version
of MV-PURE estimator which used this particular informa-
tion in the estimation process (see [10] for the closed form
expression of this version of MV-PURE estimator).

The performance of the solutions considered in the above
described settings were evaluated using the squared estima-
tion error, i.e.

error =‖ Q− Q̂ ‖2F , (15)

which was averaged over 1000 independent noise realiza-
tions. The rank of the correlation matrix approximation was
set as 7r for PC and CSM beamformers. The results are
shown in Figure 1, where it is seen that the MV-PURE es-
timator offers a larger gain in performance for lower SNR,
which is in line with theoretical analysis and numerical simu-
lations in [10]. Note that the GSC (full-rank) is in our settings
simply a different implementation of ΦBLUE in (4), thus their
performances overlap in the figure.
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Fig. 1. Estimation error as a function of SNR for the differ-
ent estimators considered. The dotted line corresponds to the
linearly constrained (lc) version of the MV-PURE.

An example of the performance of the MV-PURE estima-
tor (without linear constraints) and PC beamformer (which
achieves the lowest estimation error apart from MV-PURE
estimators in Figure 1) is shown in Figure 2. It is seen that
the estimation variance of MV-PURE estimator is much lower
than the variance in the PC beamformer for certain coeffi-
cients.

5. CONCLUDING REMARKS

We have presented an efficient solution to dipole source sig-
nals estimation in EEG under ill-conditioned settings. The
gain in performance was motivated by theoretical considera-
tions and demonstrated afterwards by means of realistic nu-
merical simulations.

We would also like to emphasize that the gain in perfor-
mance of MV-PURE estimator does not come at the expense
of computational cost. Indeed, an efficient recursive computa-
tion method which is inherently parallel and does not require
any matrix inversions for estimation of wide-sense stationary
processes (such as those considered in this paper) is avail-
able for the MV-PURE estimator of the form (10) in [20].
Therefore, the results here presented highlight flexibility of
the MV-PURE framework, and encourage us to expand its us-
age in brain signal processing by further theoretical research
and experiments with real data in the direction initiated in this
paper.
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