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ABSTRACT
In this paper, we present a method to reconstruct motion tra-
jectories of the upper body using inertial measurement units
(IMUs). We combine the use of complementary filters and
biomechanical models to reconstruct upper body motions. At
rst, we use complementary lters to combine information from
low-frequency part of accelerometers and magnetometers,
and high-frequency part of gyros to estimate sensor orienta-
tions and gyro bias. Then we use the estimated orientations of
the upper arm and forearm to calculate trajectories of upper
limb movements. Finally, we determine the set of parameters
for complementary lters that minimized training errors. Ex-
perimental results indicate higher than 90% accuracy using
accelerometers, gyros and magnetometers.

Index Terms— Complementary filters, Motion tracking,
IMUs

1. INTRODUCTION

IMUs are widely used due to their low cost, lightweight and
small size. They are now implemented into numerous fields
including aviation, robotics, gaming, sports and others to
measure orientations or directions[1, 2, 3, 4]. Some studies
also utilized inertial sensing to classify human activities or
reconstruct human motions [5, 6, 7, 8, 9, 10].

Generally used IMUs include accelerometers, gyros,
magnetometers, GPS and other devices. Due to their physical
characteristics and numerical data manipulating procedures,
estimation results using these devices suffer from high mea-
surement noise, incorrect scaling and biasing. Therefore,
there are many studies discussing how to model measurement
errors and drift using various filters and algorithms[11, 12,
13].

Our goal is to estimate the orientations of upper limbs
at any given moment to find the motion trajectories of the
arm. This will benefit medical-field studies which focus on
long-term and detailed movement monitoring. For diseases
such as Parkinsons disease or rehabilitation from injuries,
doctors and therapists usually need to watch tiny changes of
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patients’ motions for a period of time outside the hospitals.
If there exists a system composed of IMUs, which can tell
them any instant changes of the motions at patients’ home
environments, it would greatly benefit doctors’ diagnosis and
save huge amount of medical resources.

Much research has been conducted to reconstruct trajec-
tories, or to estimate sensor orientations. In [9] kinematic
models were combined with unscented Kalman filters to esti-
mate orientations of joints under slow and fast motions. How-
ever only simple arm movements were evaluated. In [10],
a continuous-wavelet-transform based method was used to
integrate accelerometer data analytically to avoid numerical
integration drifts, in which subjects only performed motions
slowly, and some reconstructed patterns are only recognizable
but not accurate.

In this paper, we estimated motion trajectories by combin-
ing non-linear complementary filter design, which estimated
orientations and gyro bias[3, 14], with biomechanical models
of upper limbs, including limb decomposition and human mo-
tion limitations. Experiments were conducted covering arm
movements, pattern drawing and daily life activities. This
method not only applies to upper limb motion reconstruction,
but can be also used to estimate orientation of lower limbs
with the appropriate kinematic model.

2. ALGORITHMS

2.1. Definitions and Measurement Modeling

In geometry, every rotation matrix R ∈ R3×3 belongs to the
special orthogonal group SO(3), that is, every rotation matrix
satisfiesRT = R−1. Also, every orientation can be expressed
as a vector v ∈ R3 where v contains yaw, pitch and roll angles
of the orientation. In this study we define the operator ∨ :
R3 → SO(3) such that

v∨ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 v ∈ R3, v∨ ∈ SO(3)

We define vex : SO(3)→ R3 being the inverse of ∨, thus
we have (vex(R))∨ = R,R ∈ SO(3)

We define subscript and superscript A to represent the
Earth frame of reference, for which in this paper we use x,
y, and z axes to represent north east down (NED) directions.
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We use B to represent the body frame of reference, and E to
represent the estimator frame of reference. For instance, Bv
represents the orientation v relative to the body frame; A

BR
represents the orientation matrix R from Earth frame to the
body frame.

Let the noisy data of accelerometers, gyros and magne-
tometers relative to the body frame be denoted by B ã, Bω̃,
and Bm̃, while the true values are Ba, Bω, and Bm. In this
paper, we model the relation of collected signals to their true
values by

B ã = Ba+ ba + na

Bω̃ = Bω + bω + nω

Bm̃ = Bm+ bm + nm

where ba, bω , bm, are the constant bias of the measurement,
and na, nω , nm are zero-mean additive white Gaussian noise.

2.2. Non-linear Complementary Filter with Bias Estima-
tion

In this section, we describe how to transform sensor orienta-
tions A

ER̂ from the estimator frame to the Earth frame with
noisy measurements. This value should be close to the true
orientation from the body frame to the Earth frame, which is
A
BR.

Ideally, any two nonparallel measurements can be used to
calculate the orientation. Thus, we can estimate the orienta-
tions of a rigid body given measurements from accelerome-
ters and magnetometers. We call this estimate the static ori-
entation A

ER̂s. It can be acquired using

A
ER̂s = argmin

R∈SO(3)

(
‖R ·B ã

‖B ã‖
− Ag

‖Ag‖
‖2 + ‖R ·B m̃

‖Bm̃‖
− Am

‖Am‖
‖2
)

where ‖ · ‖ is the vector norm, Ag and Am are gravity and
Earth’s magnetic field in the Earth frame. Usually a sub-
optimal solution is presented due to the computational com-
plexity of this problem. Here the static estimated is expressed
as

A
ER̂s =

[(
B ã
‖B ã‖ × Bm̃

‖Bm̃‖

)
× B ã
‖B ã‖

B ã
‖B ã‖ × Bm̃

‖Bm̃‖
B ã
‖B ã‖

]T
where × denotes the vector cross product.

This static estimate is accurate if the object moves slowly
and the measurement error is small, that is, in low frequency
conditions we have A

ER̂s ≈ A
BR.

We estimate the dynamic orientations A
ER̂d from kine-

matic constraints by solving the following differential equa-
tion

∂

∂t
A
ER̂d = A

ER̂d · Bω̃∨ = (AER̂d · Bω̃)∨ · AER̂d

Since the high frequency part of the gyro data is accurate,
the instantaneous change of the dynamic estimation is close
A
BR. That is, we have ∂

∂t
A
ER̂d ≈ ∂

∂t
A
BR.

The rotation error between frames can be expressed as
R̃ = A

ER̂
TA
BR. Based on [15, 14], we define the correction

term

σ = vex

(
1

2
(R̃T − R̃)

)
∈ R3

In this paper, we use σ to represent error between the es-
timated orientation and the true orientation. When the es-
timation is equal to the truth, we have R̃ = I3, and thus
σ =

[
0 0 0

]T
. With the above definitions, we then fuse

static and dynamic estimates to derive the final estimate of the
orientation A

ER̂.
From kinematics of a rigid body we know for a rotation

matrix R we have

∂

∂t
R = Rω∨ = (Rω)∨R

where ω is the angular velocity. By modifying the last term
of the equation and based on [3, 15], we define two types of
filters.

Direct complementary filter with bias correction

∂

∂t
A
ER̂

D =
(
A
ER̂s(Bω̃ − b̂Dω ) + kp

A
ER̂

Dσ
)
∨

A
ER̂

D

A
ER̂

D(0) = A
ER̂s0 (1a)

∂

∂t
b̂Dω = −kIσ, b̂Dω (0) = b̂Dω0 (1b)

σ = vex

(
1

2
(R̃T − R̃)

)
R̃ = (AER̂

D)TA
ER̂s (1c)

Passive complementary filter with bias correction

∂

∂t
A
ER̂

P =
(
A
ER̂

P (Bω̃ − b̂Pω ) + kp
A
ER̂

Pσ
)
∨

A
ER̂

P

A
ER̂

P (0) = A
ER̂s0 (2a)

∂

∂t
b̂Pω = −kIσ, b̂Pω (0) = b̂Pω0 (2b)

σ = vex

(
1

2
(R̃T − R̃)

)
R̃ = (AER̂

P )TA
ER̂s (2c)

where A
ER̂

D and A
ER̂

P are direct and passive estimates of the
orientation from the estimator frame to the Earth frame, b̂Dω
and b̂Pω are the estimated bias of gyros, kp and kI are positive
gains.

In [3] it was shown that the estimates of the orienta-
tions A

ER̂
D and A

ER̂
P , as well as gyro bias estimations bDω

and bPω will converge to the true values A
BR and bω respec-

tively, and for almost all initial conditions the trajectory
(AER̂

D(t), b̂Dω (t)) and (AER̂
D(t), b̂Dω (t)) converge to the tra-

jectory (ABR, bω). In this paper, we use both methods to
estimate the orientations of the sensors.

2.3. Upper Body Motion Decomposition

After finding the orientations of sensors using complementary
filters, we then use biomechanical models for the upper limbs
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Fig. 1. Position and orientation of sensor placement

to reconstruct human motions. In this model, we assume that
the upper limb motions can be decomposed into upper arm
and forearm movements. In this paper we put sensors in the
middle of these two limbs, and align the y-axis of the sensors
with the bone, where the plus direction of the y-axis points
outward from the human body. Figure 1 shows positions and
orientations of sensor placements. We do not put sensors on
the fist and consider the fist as a part that extends from the
forearm. Also, we consider the shoulder to be a fixed joint
in the space. Therefore, the whole model of the upper limb
looks like a double pendulum.

We use a hierarchical model to describe human joints. In
this model, parent joints are those closer to the center of the
body, while child joints are those connecting to their parents
and away from the center. The bones are defined by surround-
ing parent and child joints, their own orientations, and their
lengths. Let the joint m denote a parent joint with its location
in the Earth frame APm ∈ R3. This parent is connected to its
child m + 1 by bone of length lm with estimated orientation
A
ER̂lm . This estimated orientation A

ER̂lm is the same as that of
the sensor attached to the limb. Since the y-axis of the sensor
is aligned with the bone, we can define a relative vector

EV = E

[
0 lm 0

]T ∈ R3 in the estimator frame. This
vector represents the direction of the child joint m + 1 seen
by the parent joint m. We can then express the location of the
child joint in the estimator frame as

EPm+1 = EPm + A
ER̂ ·E V (3)

This formula describes how we can find positions of child
joints given their parents.

In this study, we set the origin at the position of the shoul-
der joint. Let A

ER̂U and A
ER̂F represent the estimated orienta-

tions of the upper arm and the forearm respectively. Also, let
lu represent the length of the upper arm, and lf be the length
of the forearm and the fist. Then from equation (3) we can
find the positions of the elbow APW and the fist APF in the
Earth frame by

APW = A
ER̂U

[
0 lu 0

]T
(4a)

APF = APW + A
ER̂F

[
0 lf 0

]T
(4b)

By calculating the APW and APF , we can then estimate upper
limb trajectories in NED coordinates.

2.4. Filter Parameter Determination

Since human limbs deform when twisting, they cannot be
considered as ideal rigid bodies. Therefore, the above double
pendulum model needs to be fixed. We remodel the problem
into a supervised training procedure.

At first, we asked subjects to perform some designated
motions, and recorded the ground truth. The training mo-
tions were designed to be easily followed and were repeated
for several times. Later on, we compared the estimated re-
sults with the ground truth, and calculated estimation errors.
We tuned the parameters (kp, kI) in equations (1) and (2) and
record estimation errors. Finally, we found out the optimal set
of (k∗p, k

∗
I) such that the estimation error is minimized.

In this study, subjects were asked to slowly draw a square
of length l on a wall, and they stopped for a while at each ver-
tex. We then rebuilt the training motions using the algorithms
of 2.2 and 2.3 with different (kp, kI). We compared the re-
constructed length to l and found the estimation error. The
optimal set (k∗p, k

∗
I) given the minimum error would be used

in the testing experiments. In summary, we have

(k∗p, k
∗
I) = argmin

(kp,kI)∈(R,R)>0

N−1∑
k=1

|‖APF,k+1−APF,k‖−l| (5)

where APF,j is the position of the fist for the jth vertex of the
square.

It turns out that equation (5) is a nonconvex problem, and
therefore we exhaustively searched a certain range to find the
optimal set. Figure 2 shows an example of the error ver-
sus different (kp, kI) of the passive complementary filter for
one subject. The minimum error of 2.72% happens when
(k∗p, k

∗
I) = (1.3, 0.8). For direct complementary filters we

have similar results and they are also nonconvex problems.
Once we found the optimal parameters, we then applied

them to the testing set, and that completes the training pro-
cess.
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Fig. 2. Error rate with different parameters of passive com-
plementary filters. The red dot marks minimum-error position
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Fig. 3. Vertical arc reconstruction. The ground truth (180◦) is
shown in black curves.

3. EXPERIMENTAL RESULTS

Several experiments were conducted using a Sparkfun 9 de-
grees of freedom IMU chip [16] with sampling rate 50Hz.
Two sensors were placed in the middle of the upper arm and
the forearm as depicted in figure 1. 12 subjects participated in
the experiments. In the first experiment subjects were asked
to perform 10 rotations around their shoulders from bottom
to top for 10 times. Figure 3 shows the 3-dimensional mo-
tion reconstruction of the fist movements. Average errors for
swing angle estimation are shown in table 1.

In the second experiment subjects drew three shapes on a
wall: squares, circles and triangles. The length, height and
diameter are 20 inches for squares, triangles and circles re-
spectively. During the experiment, we did not instruct sub-
jects how to draw, that is, how they bend and twist their arms.
Each shape took no more than 5 seconds to complete and was
repeated for 10 times. Figure 4 (a)-(c) show the reconstructed
trajectories with the static model, along with estimates using
direct and passive complementary filters. Table 1 shows av-
erage errors in estimating lengths for squares and triangles,
and radius for circles. From the figure we can see the recon-
structed patterns are very close to ground truth, with small er-
rors which are mainly caused from twists of subjects’ wrists
and deformations of forearms.

Another experiment of pattern drawing was performed,
but this time we increased the drawing speed to less than 2
seconds per shape. Figure 4 (d)-(f) shows the reconstructed
results. From this figure we can see for the static models that
it is hard to recognize the shape since measurement of gravity
was severely impeded by fast moves. On the other hand, with
the use of complementary filters and biomechnical models the
drawn patterns are still clearly recognizable.

The third experiment was conducted to simulate reaching
for and grasping books. In this experiment we portioned a 20’
by 20’ square hanging on a wall into a 3 × 3 array. Then we

Table 1. Percentage of errors for experiments
Experiment Direct Passive Integration
Vertical arc 9.46 4.68 39.48
Square 6.14 5.04 33.39
Triangle 6.43 6.00 33.54
Circle 4.52 4.23 37.31
Book taking 13.01 12.05 38.86
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(d) Square (fast move)
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(f) Circle (fast move)
Fig. 4. Reconstruction of pattern drawing, ground truths are
shown in black curves

tapped each points 10 times to simulate patients taking books
off of a shelf. Figure 5 shows the reconstructed results. The
average errors in distances are shown in table 1.

In summary, we had 9.46% and 4.68% error in the arc
movement experiment using direct and passive filters, and
less than 7% error in the pattern plot experiment. In the book
reaching experiment, we had 12% error, compared to 38%
error using numerical integration. Compared to prior work
[9, 10] the proposed method can track more complex and
rapid arm movements. From the figures we can see that the
static estimations suffered from sensor noise, deformation of
limbs, and external forces that made measurement of gravity
inaccurate. On the other side, from table 1 we can see error
accumulates using only from integration of gyro data. As a
result, the use of complementary filters with a biomechanical
model enables us to greatly reduce noise caused by sensors,
and eliminate drifts due to numerical integration.

4. CONCLUSION

This paper presents a new algorithm to estimate upper limb
motion trajectories using accelerometer, gyro, and magne-
tometer measurements. This algorithm combines non-linear
direct and passive complementary filters and biomechanical
models to estimate upper limb trajectories. The estimator also
finds the optimal set of parameters for complementary filters
to minimize errors caused by noise and limb deformations.
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Fig. 5. Reconstruction of book reaching. The ground truth is
shown in black stars.
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