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ABSTRACT

This work examines the flow of information among electrodes
attached to the brain and uses diffusion adaptation strategies
to assess brain cortical connectivity. The method uses the di-
rected transfer function (DTF) technique to estimate combi-
nation coefficients to drive the adaptation and learning pro-
cess. The diffusion strategy is then applied to the problem of
recognizing left and right hand movements and its superior
performance is demonstrated relative to solutions that rely on
stand-alone electrodes and do not exploit coordination among
multiple electrodes.

Index Terms— Diffusion adaptation, brain connectivity,
directed transfer function.

1. INTRODUCTION

There is a growing interest in using network models to ex-
plore brain connectivity with the intent of elucidating the
anatomical and functional organization of the brain during
specific tasks. In this paper, we examine the flow of informa-
tion among electrodes attached to the scalp and use diffusion
adaptation strategies to establish a model for performing a
movement-related task. We employ the DTF technique to es-
timate combination coefficients that drive the adaptation and
learning process. The diffusion strategy exploits the space-
time characteristics of the measured signals more fully than
non-cooperative models and leads to an enhanced model for
recognising hand movements [1].

It is well-known that particular connectivity patterns be-
tween neurons in the brain are reflective of mental, cognitive,
and movement activities. The patterns vary both in time and
space and originate from distributed synaptic current sources.
Modelling such connectivity patterns is therefore of great sig-
nificance. One of the earliest measures of brain connectivity
is the Pearson product correlation measure, also called “co-
modulation” or Lexicor spectral correlation coefficient [2].
The coefficient is used to estimate the degree of association
between amplitudes or magnitudes of the electroencephalog-
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raphy (EEG) signals, acquired by electrodes attached to the
scalp, over intervals of time and frequency.

In some applications, such as the detection and classifi-
cation of finger movements, it is important to find out how
the electric signals propagate within the neural network of the
brain. In these cases, there is a consistent movement of the
source signals from the occipital to temporal regions. Refer-
ences [3][4][5] proposed a useful multivariate auto-regressive
(MVAR) model to explain how the directionality of the cor-
tical signal patterns changes within the brain. It is also clear
that during mental tasks, different regions within the brain
communicate with each other. The interactions and cross-
talks among the EEG channels offer valuable clues towards
understanding the processing at the brain during various tasks.
For this purpose, it is important to recognize the transient
periods of synchrony between various regions in the brain.
These phenomena are not easy to observe by visual inspec-
tion of the EEGs. In some approaches, the connectivity, co-
herency, and synchronization of the brain regions are evalu-
ated by examining the spatial statistics of scalp EEG signals
using coherence measures.

Spectral coherence [6] is one common method for deter-
mining synchrony in EEG activity. Coherency is a normalized
form of cross-spectrum. However, it does not provide infor-
mation on the directionality of the coupling between record-
ing sites. Granger causality (also called Wiener-Granger
causality) [7] is another useful measure that attempts to ex-
tract and quantify the directionality from EEGs. Granger
causality is based on bivariate AR estimates from the data.
Based on Granger causality, if the past samples of a time
series y(i) can be used to predict another series x(i), then
y(i) is said to cause x(i).

Nevertheless, application of the Granger causality mea-
sure to multivariate data arising from multichannel record-
ing is not computationally efficient. The directed transfer
function (DTF) concept [3][4][5] is an extension of Granger
causality and it can be used to detect and quantify the cou-
pling directions. The advantage of DTF over spectral coher-
ence is that it can determine the directionality in the cou-
pling when the frequency spectra of the two brain regions
have overlapping spectra [8]. A time-varying DTF can also
be generated to track source signals by calculating the DTF
over short windows to achieve the short time DTF (SDTF).
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Fig. 1. An illustration of a brain connectivity pattern. EEG
signals collected at the marked electrodes are used to train a
cooperative network to estimate a model for right or left hand
movements.

This SDTF technique plays an important role in the clas-
sification of left and right hand movements and in tracking the
related sources of the brain signals. Using phase coherence,
the delay between the onsets of similar frequency components
can be estimated and it reveals the direction of propagation.

Most available techniques for evaluating connectivity pat-
terns assume the underlying signals to be stationary. They
also consider the sources separately. Network adaptation and
diffusion strategies, on the other hand, allow us to exploit
more fully the temporal and spatial characteristics of the brain
signals. This approach models the sources from a number of
neurons as agents that communicate with each other in space
and evolve over time. One useful advantage of this approach
is that it can cope with nonstationary data.

Notation: Bold uppercase letters denote matrices and bold
lowercase letters denote column vectors.

2. DIFFUSION-BASED PROCESSING MODEL

In our proposed method towards studying brain connectiv-
ity, we couple the DTF technique with a diffusion adaptation
strategy in order to enable a robust modelling of a motor task.
The details of the approach are described in the sequel.

2.1. Directed Transfer Function

To define the DTF, we consider an N−channel multivariate
process represented by the vector:

xi =
[
u1(i) u2(i) u3(i) · · · uN (i)

]
(1)

The entries of this vector represent the EEG signals that are
collected at N electrodes attached to the scalp. The vec-
tor signal is assumed to satisfy a multivariate auto-regressive
model (MVAR) of the form:

xi =
L∑

m=1

Amxi−m + ei (2)

where L denotes the model order, ei is the error term, and
Am are N × N matrix coefficients. Let H(ejω) denote the
frequency response of the system mapping ei to xi, namely,

H(ejω) =

[
IN −

L∑
m=1

Ame−jωm

]−1

(3)

This frequency response contains useful information about
the relations between the electrode channels. We define the
DTF coefficient of indices (ℓ, k) as the following measure of
the causal influence of channel ℓ on channel k [9]:

γ2
ℓk(e

jω) =
|Hℓk(e

jω)|2∑N
q=1 |Hqk(ejω)|2

(4)

2.2. Diffusion Least-Mean-Squares

In diffusion adaptation, the goal is to estimate an M × 1 un-
known vector wo in a distributed manner from measurements
collected at N nodes spread over a network. Each node k
has access to time realisations {dk(i),uk,i} of data that are
assumed to be related via a linear regression model

dk(i) = uk,iw
o + vk(i) (5)

where vk(i) represents measurement noise, assumed to be
temporally white and independent over space. There are sev-
eral diffusion strategies that can be used for the estimation
of wo [10] [11]. The so-called Adapt-then-Combine (ATC)
strategy takes the following form:

ψk,i = wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (6)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (7)

where wk,i denotes the estimate for wo that is computed by
node k at time i, and the {aℓk} are nonnegative coefficients
that satisfy ∑

ℓ∈Nk

aℓk = 1, aℓk = 0 if ℓ /∈ Nk (8)

Moreover, Nk denotes the set of neighbors of node k. The
ATC implementation involves two operations. In the first
step, each node updates its intermediate estimate wk,i−1 to
ψk,i by using its local data. And in the second step, the node
aggregates the intermediate estimates of its neighbors to ob-
tain wk,i.
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Fig. 2. Outline of the proposed method combining DTF and diffusion adaptation (avg refers to averaging operation).

2.3. Combining DTF and Diffusion

Suppose we acquire N EEG signals {uk(i)} over time i ≥ 0
from N electrodes attached to the scalp. These signals are the
result of a certain movement task by the individual, such as
moving the right hand. For each electrode k, the EEG signal
is used to construct the regression vector of size M as follows:

uk,i =
[
uk(i) uk(i− 1) · · · uk(i−M + 1)

]
(9)

Each electrode location is treated as corresponding to the lo-
cation of a node k in a diffusion network. All nodes are
presented with reference signals, dk(i) for k = 1, 2, . . . , N .
These signals are constructed as follows. They are obtained
by averaging different epochs of EEG signals that correspond
to the same task. Therefore, the signals dk(i) are representa-
tive of the physiological characteristics that are specific to the
motor task under examination. We can then apply diffusion
adaptation on the data {dk(i),uk,i} in order to estimate the
model wo that relates the data. Once wo is estimated, it can
be subsequently used to classify whether a given EEG signal
belongs to one class (right-hand movement) or another (left-
hand movement). However, in order to apply the diffusion
strategy, we need first to determine the connectivity (i.e.,the
topology) pattern that is supposed to represent the interactions
among the electrode locations.

For this purpose we distinguish the two steps of the dif-
fusion LMS algorithm as the adaptation (6) and combination
steps (7). Before performing the combination step, we use
the EEG signals {uk(i)} to construct the vector process xi

defined by (1) and fit a MVAR model into the data to estimate
the coefficients {Am}. This step can be accomplished, for
example, by using the ARFit toolbox [12]; it can also be ac-
complished in an adaptive manner and we leave this extension
for future consideration. Using the estimated {Am}, we can
estimate the DTF coefficients {γ2

ℓk(e
jω)} over a grid within

some desired frequency band, especially since different mo-
tor actions tend to lead to more pronounced DTF coefficients
over particular frequency bands. We subsequently average the
DTF values γ2

ℓk(e
jω) over the specific frequency band to ob-

tain coefficient values that are representative of the cortical
connectivity for the particular motor action. These averaged

values are used as the combination coefficients {aℓk} for the
diffusion update. In general, the averaged DTF coefficients
{γ2

ℓk} are sparse over the domain ℓ × k and, therefore, the
coefficients {aℓk} will also be sparse. Specifically since the
values of the DTF coefficients between most electrodes are
close to zero, we set a threshold and discard values below the
threshold. In this way, we end up defining the neighborhood
Nk for each node k. After we normalise these values to en-
sure that they satisfy the first constraint of equation (8), we
run the diffusion steps (6)-(7).

The model wo that results from this procedure is based on
incorporating information about brain connectivity and on ex-
ploiting the temporal and spatial features of the EEG signals
more fully. Using this model to test other subjects or tasks
can lead to useful insights about the connectivity patterns of
the brain and the changes from task to task or between patient
subjects.

3. EXPERIMENTS

We use a simulation scheme similar to the one used to vali-
date brain connectivity measures in [9]. We use the BCI com-
petition II dataset (Dataset III) [13], which consists of 140
training trials of 2 classes (imagery left and right hand move-
ments). We isolate one random trial from each class (s1 and
s2) and generate five signals from each by delaying them by
five different delays (see Fig. 3). This way we can simulate
the propagation of two signals from different starting points.
We add Gaussian noise to introduce perturbation to the sys-
tem. The outcome of this procedure is the generation of our
experimental dataset. We proceed by using the diffusion LMS
algorithm to estimate the filter coefficients wk,i. In this exper-
iment, all nodes are presented with the same reference signal
dk(i) = d(i) for k = 1, 2, . . . , N . Therefore, we use the
signal s1 as the global reference signal d(i) and use the mea-
sured signals generated by s1 to construct the regression data
{uk,i} after adding some relatively low noise. Using the pro-
posed method we are able to estimate the filter coefficients
that describe our connectivity-enhanced model. The number
of iterations and the parameter µ are fixed and the step-size is
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Fig. 3. Dataset generation; we delay and add noise to each
signal in order to simulate the signal propagation across the
nodes. We repeat the procedure for the left hand.

sufficiently small to ensure convergence of the filter.
Using the estimated model wo that results from the diffu-

sion step after training, we apply it to classify other data sig-
nals into right-hand and left-hand movements. We compare
the performance of the diffusion implementation with a non-
cooperative solution in Fig. 4. We simply classify the signals
by only using the value of the mean square error and we cal-
culate the percentage of the incorrectly classified signals. The
results in the figure confirm the superior performance of the
diffusion solution.

4. CONCLUSION

In this paper we introduced a modelling approach for describ-
ing a motor task using brain connectivity. The model is a real-
istic simulation of synaptic flow within the brain as the result
of hand (or general body) movement. The approach bene-
fits from the DTF connectivity measure to drive the learning
process. The resulting model can be used for classification
of left-right hand movement and therefore provides a useful
direction in BCI and in places where movement-related con-
nectivity changes occur as in Parkinson’s patients.
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