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ABSTRACT

Electromagnetic source localization is a technique that en-
ables the study of neural dynamical activities on a millisec-
ond timescale using Magnetoencephalography (MEG) or Elec-
troencephalography (EEG) data. It aims to reveal neural ac-
tivities in the brain cortical region which cannot be seen with
imaging methods that operate on a slower timescale such as
fMRI. In this paper, we model the problem under a Bayesian
multi-target tracking framework. A multi-target detection and
particle filtering algorithm is developed to estimate the dipolar
source dynamics, and a minimum norm (MN) based estima-
tion method is incorporated to construct the birth-death move
for the dynamical number of dipolar sources. The algorithm
is tested using both simulated and experimental data1. The
results demonstrate that the proposed algorithm performs bet-
ter than that in previous works in terms of both localization
accuracy and computational cost.

Index Terms— Localization, dipolar sources, MEG/EEG,
Bayesian, particle filter

1. INTRODUCTION

In the past two decades, non-invasive imaging techniques such
as functional Magnetic resonance Imaging (fMRI), Magne-
toencephalography (MEG) and Electroencephalography (EEG)
have been developed to explore the instantaneous activities of
the human brain [1]. Amongst these techniques, MEG/EEG
have temporal resolutions in millisecond scale, which enables
us to observe the electromagnetic source activities in a mil-
lisecond range, thereby localizing the active regions in the
cortical area.

The MEG/EEG source localization problem is important
in clinical applications, such as diagnosing epilepsy, surgical
planning and other neuroscience studies [2]. As the electro-
magnetic signals produced by a single neuron are too weak to

1The author would like to thank CBU MRC of Cambridge Univeristy for
providing the datasets, especially Dr.Matti Stenroos for providing suggestions
and the Matlab visualization tools, Dr. Rik Henson for putting all data models
together and organizing the datasets, Dr. Simo Särkkä and Dr. Olaf Hauk for
their useful comments.

be measured, tens of thousands of synchronously neurons are
required to produce measurable signals. For the purpose of
modeling, many geographically neighboring neurons can be
summarized as a “dipole” [1]. Our goal is to localize the brain
dipolar sources given MEG data.

There is a significant amount of work modeling the brain
currents as dipolar sources, which have addressed the dipole lo-
calization problem using various schemes [2, 3, 4, 5, 6]. Some
early papers employed optimization techniques [2, 3], whereas
others modeled the problem under a Bayesian framework. As
the measured data depends nonlinearly on the characteristics
of the dipoles, Somersalo et. al. [4] first introduced particle
filtering approaches [7] to numerically approximate the dipole
characteristics. In [5], a Rao-Blackwellized particle filter was
proposed for single/two dipoles tracking. In [6], a random
finite sets method was introduced to model the dipole number.
However, the performances of these approaches are limited in
multi-dipole localization scenarios.

In this paper, we propose a new dipole-based Bayesian
particle filtering algorithm. The localization problem is treated
as a multi-target tracking problem in a constrained 3D state
space—the cortex. A Bayesian particle filtering approach is
developed to localize varying numbers of dipoles. The algo-
rithm incorporates a Minimum Norm (MN) estimation method
to detect active brain regions before tracking. A nonlinear
spherical head model is employed, and a random walk model
is used for the state dynamics. The algorithm is tested and
compared with those in previous works. Results show that the
proposed approach achieves better performance in terms of
localization accuracy.

The rest of the paper is organized as follows. Section 2
describes the general problem formulation. Section 3 details
the DMAPF algorithm. Section 4 gives results obtained using
both simulated and real data. Section 5 makes concluding
remarks.

2. PROBLEM FORMULATION

Consider a MEG application with coil sensors {s = 1, 2, · · · , S}
distributed outside the surface of the head. Let X de-
note an I × K matrix representing the state of the dipole
sources, where {k = 1, 2, · · · ,K} denotes the time steps
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and {i = 1, 2, · · · , I} indexes the active dipole sources in
the cortex. We write X = [x1 · · ·xk · · ·xK ]. The state
of all dipole sources at time step k is an I × 1 vector
xk = [xT1,k · · ·xTi,k · · ·xTI,k]T , where xi,k is a 6 × 1 vec-
tor that describes the features of the ith dipole in a 3D
Cartesian coordinate. Specifically, xi,k = [αTi,k, β

T
i,k]

T , where
αi,k is a location vector and βi,k is an amplitude vector (each
contain 3 elements). The orientation of a dipolar source can
be tangential or radial to the scalp surface (see [1] for details).
The magnetic field generated by radial dipoles is very weak
compared to that from tangential dipoles. Thus, we assume
that the orientation of all simulated dipole sources are fixed as
normal to the scalp surface.

Let Y denote an S × K matrix representing MEG data
measured from the coils, i.e. Y = [y1 · · ·yk · · ·yK ], where
yk is defined a S × 1 vector yk = [y1,k · · · ys,k · · · yS,k]T
and ys,k denotes the measurement from sensor s at time step
k. The magnetic field ys,k is produced by the neural current
density Jk(α), it can be treated as a sum of several dipolar
sources represented by xk.

We now construct the dipole dynamic model as xi,k =
f (xi,k−1, εi,k), where ε is dynamic noise. The measurement
model is defined as ys,k = b(xi,k, ζs,k), where ζ is measure-
ment noise.

2.1 Brain dipole modeling
The measurement model is constructed by the Biot-Savart
law [1]. We assume that the dipole activities are confined to
the cerebral cortex space, which is a 2 - 4 mm thick sheet of
gray tissue in the uppermost layer of the brain. The state space
is denoted as Ω, which constrains the dipoles to lie within the
cerebral cortex.

Assume we have multiple dipolar sources evloving within
Ω. WE can express the magnetic signal measured by the sth
sensor with lead fields that are obtained from forward model.
The forward model b(xi,k, ζs,k) can be expressed as

ys,k =
µ0

4π

∫
Ω

Jk(α)×
(rs − α)
|rs − α|3

· ersdv
′ + ζs,k, (1)

where rs is the 3D location of the sth sensor, ei is the orienta-
tion vector, and µ0 = 4π × 10−7 is the magnetic permeability
electromagnetic constant. More generally, the measurement
model is yk = b(xk, ζk), where we assume the measurement
noise ζs,k is independent Gaussian with zero mean and vari-
ance σ2

ζ .
In the dipole dynamic model, we assume that the dynamics

of dipole sources are independent of each other. We consider
a random walk model for dipole state prediction, where the
state space is constrained to Ω. For the ith dipole, we have
xi,k = xi,k−1 + εi,k, where εi,k is modeled as an independent
Gaussian with zero mean and variance σ2

ε . When the sample
values exceed the state space Ω, the algorithm repeats the
propagation step until the sample values lie within Ω.

2.2 Dipole birth-death move
As the number of dipoles evolves over time, an MN-based

estimation approach is employed to detect the active cortical
regions instantaneously, thus providing information about the
number of dipoles. Since the dipole moment varies quickly,
we only consider the dipole location αi,k as the criterion for
the dipole birth-death move.

At time k−1, consider the Ik−1 dipoles {Ik−1; {αi,k−1}
Ik−1

i=1 }.
MN-based estimation (described in next section) gives
{Îk; {α̂j,k}Îkj=1} at time k, where Îk is the detected dipole
number and α̂j,k is the corresponding detected dipole location.

We compute the distance di,j = ||αi,k−1− α̂j,k||. We then
introduce qi,j which represents the probability of associating
the jth newly detected dipole α̂j,k with the ith dipole at time
k− 1, qi,j ∼ N (di,j − dthres,vd), where dthres is the thresh-
old distance between dipoles, and vd is the fixed variance.
Thus, we can generate the new dipole number and locations
at time k, {Ik; {αi,k}Iki=1}. For each j, if qi,j > qthres, we
associate the jth detected dipole with the ith dipole, otherwise
it is treated as a new birth. Dipoles at time k−1 will be deleted
(death) if they are not associated with any detected dipole j,
qthres is the fixed value represents the threshold.

3. DMAPF ALGORITHM

Given the above models, the dipole source localization is a non-
linear multi-target tracking problem with a varying number of
targets. We now introduce the DMAPF algorithm in two steps:
MN-based dipole detection and multiple auxiliary particle
filtering.

Step 1. Minimum norm detection
The minimum norm method [8] divides the whole state space
into M potential distributed sources with fixed locations, and
computes the distributed sources linearly. The S ×M lead
field matrix H was derived with SPM [9] that used the Nolte
method [10] as implemented in FieldTrip [11]. We have yk =
Hzk. Given yk and H, the minimum norm method computes
ẑk, which contains M elements describing the moment for
each of the distributed sources. Elements in ẑk with large
fluctuations will then be identified; an agglomerative clustering
algorithm [12] is applied to construct clusters of potential
sources. Consequently, the clustered sources are provided
as newly detected dipoles {Îk; {α̂j,k}Îkj=1} for the birth-death
move. In practice, as most dipoles exist for several time steps,
the minimum norm detection is executed every L particle
filtering runs, i.e. every L time steps.

Step 2. Multi-target particle filtering
During every L time steps, the problem appears as a multi-
dipole tracking problem with a fixed number of dipoles. Here
we introduce a multiple particle filtering concept, which was
first developed in [13]. The basic idea is to assign each target
an individual Particle Filter (iPF). Each iPF updates new target
estimates based on estimations given by the rest of the iPFs. At
each time k, iPFs cooperate with each other and the multiple
particle filter operates in a sequential manner. This particle
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filtering algorithm is an approximate procedure that substitutes
posterior mean estimates for other targets.

To fit the dipole localization problem, the posterior density
function (pdf) can be written as p(xi,0:k|y1:k,x−i,0:k), where
x−i,0:k is the state vector excluding xi,0:k.

The observed dipole dynamic implies that the dipole state
xk may vary significantly from its previous time step. This
results in a high variance of weights when we perform sequen-
tial sampling importance resampling (SIR) [7]. In contrast
with the algorithm developed in [13] which uses a SIR filter,
we incorporate an auxiliary particle filter [14].

The algorithm first propagates N particle samples for each
dipole (or each iPF). Particles evolve according to the dynamic
model p(xi,k|x(n)

i,k−1). The algorithm then assign a weight
for each particle sample. The unnormalized weight equation
is ωi,k =

p(xi,k|yk,x−i,k)
π(xi,k|yk,x−i,k)

, where π(xi,0:k|y1:k,x−i,0:k) is an
appropriately chosen importance distribution.

Algorithm 1: DMAPF Algorithm

// Initialization at time step k=0
for i = 1, . . . , Ik and n = 1, . . . , N do

Sample: x
(n)
i,0 ∼ pΩ(xi,0), assign weight:

ω
(n)
i,0 = 1

N , estimate: x̂i,0 =
∑N
n=1 ω

(n)
i,0 x

(n)
i,0 ;

// Filtering when k>0
for k = 1, . . . ,K do

for i = 1, . . . , Ik do
for n = 1, . . . , N do

Sample: x
(n)
i,k ∼ p(xi,k|x

(n)
i,k−1, x̂−i,k−1) ;

predict: x̃i,k =
∑N
n=1 ω

(n)
i,k−1x

(n)
i,k ;

for i = 1, . . . , Ik do
for n = 1, . . . , N do

// First-stage weights

Assign: ω(n)
i,k ∝ ω

(n)
i,k−1p(yk|x

(n)
i,k , x̃−i,k)

and normalize.
// Resampling

{x(n)
i,k , ω

(n)
i,k }Nn=1 to {x(nm)

i,k , 1
N , n

m}Nm=1;
for m = 1, . . . , N do

Sample: x
(m)
i,k ∼ p(xi,k|x

(nm)
i,k−1, x̂−i,k−1);

// Second-stage weights

Assign: ω(m)
i,k ∝

p(yk|x(m)
i,k ,x̃−i,k)

p(yk|x(nm)
i,k ,x̃−i,k)

and

normalize.
for i = 1, . . . , Ik do

x̂i,k =
∑N
m=1 ω

(m)
i,k x

(m)
i,k ;

// MN-based detection
if k mod L == 0 then

Generate {Îk; {α̂j,k}Îkj=1} from ẑk;
Derive new {Ik; {αi,k}Iki=1}.

The algorithm is described in Algorithm 1. It contains
two weight calculation stages. The first-stage weight is de-
rived similarly to SIR [7]. With an appropriate choice of the

importance density π(.), we have

ω
(n)
i,k ∝ ω

(n)
i,k−1

p(yk|x(n)
i,k ,x−i,k)p(xi,k|x(n)

i,k−1,x−i,k−1)

π(xi,k|x(n)
i,k−1,yk,x−i,k−1)

, (2)

and choosing the prior as the importance density distribution
gives ω(n)

i,k ∝ ω
(n)
i,k−1p(yk|x

(n)
i,k ,x−i,k).

This expression needs to incorporate an estimate of x−i,k
when drawing samples and assigning weights, respectively.
We compute the estimates from samples of each iPF and
the prediction state at time k is chosen as the mean estimate∑N
n=1 ω

(n)
i,k−1x

(n)
i,k . Once new weights are obtained at time k,

we compute the estimation state as: x̂i,k =
∑N
n=1 ω

(n)
i,k x

(n)
i,k .

An auxiliary variable nm is introduced to aid during the
resampling step, which gives x

(nm)
i,k ; it refers to the index

of the samples after resampling. The new samples x
(m)
i,k are

then propagated according to the dynamic density distribution
p(xi,k|x(nm)

i,k−1,x−i,k−1). The second-stage weight is obtained
as a minor modification to the standard auxiliary particle filter

weight: ω(m)
i,k ∝

p(yk|x(m)
i,k ,x−i,k)

p(yk|x(nm)
i,k ,x−i,k)

.

4. NUMERICAL RESULTS

Here we present numerical results using both simulated and
real MEG data.

4.1 Simulated data
We simulate single/two/dynamical four dipoles cases. There
are 102 magnetometers distributed close to the surface of the
head. The state space Ω is confined to the outer layer of the
head model with 15 length units thickness. The width of the
brain is about 136 length units. We assume the evolution
for dipole location/amplitude are independent and identical
on each axis of the coordinate, respectively. The orientation
vector e is set to be fixed and perpendicular to the brain surface.
The standard deviation of the measurement noise equals 80%
of the mean ground-truth noiseless signal. The ground-truth
step length of the dipole location is set less than 30 length
units and the dipole amplitude is set as 20 length units.

We run the algorithm 30 times for each simulation to gener-
ate the root mean square error (RMSE). The algorithm assigns
iPFs for each of the Ik dipoles. Each iPF has 500 particles, i.e.,
500 × Ik particles at time k. Although a more accurate esti-
mation can be obtained if more particles are assigned for each
iPF, the computational cost will greatly increase. This setting
provides a good balance between the algorithmic stability and
computational efficiency. Visualizations were carried out with
tools further developed from those published in Helsinki BEM
Library [15].

A. Single/Two dipoles
We generate the MEG data for 20 time steps. For the high
noise level case, the location noise variance ρ2i,k is initialized
as 152, and the amplitude variance η2i,k is set as 102. For
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the low noise level case, ρ2i,k equals 102 and η2i,k is set as
7.52. At time k = 0, we initialize the particle location by
drawing samples from an uniform distribution over the whole
constrained volume Ω, and the particle amplitude by drawing
samples from an uniform distribution U ∼ (5, 25). For single
dipole simulation, the RMSE over 30 realizations are shown in
Table 1. Under a same noise setting, we compare the DMAPF
with an SIR filter in [4]. As the MN-based detection provides
us raw information of dipole locations, the tracking accuracy
of DMAPF is better than that of SIR. A two dipoles simulation
result is shown in Figure 1, we plot both location/amplitude
errorbar over 30 realizations for one of the two dipoles.

/Length unit Loc/x Amp/x Loc/y Amp/y Loc/z Amp/z
DMAPF(H) 11.22 10.76 11.08 10.90 12.31 12.55
SIR(H) 16.83 17.95 16.32 16.37 16.98 17.42
DMAPF(L) 8.92 8.10 8.16 8.59 10.01 10.26
SIR(L) 12.22 13.37 12.33 13.76 12.95 13.13

Table 1. RMSE of two algorithms for a single dipole tracking,
H/L: high/low noise level, Loc/Amp: Location/Amplitude,
x/y/z: the 3D coordinate.
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Fig. 1. Dipole location and amplitude error bar of dipole B in
a two dipoles tracking

(a) k=1 (b) k=15 (c) k=22 (d) k=35

Fig. 2. Dynamical number of dipoles tracking. Black cross:
ground-truth location / Red triangle: estimated location.

B. Four/Dynamical dipoles
We simulate the dynamical dipoles scenario for 50 time steps,
i.e., 10 MN-based detection runs. Up to 4 dipoles can appear

simultaneously, dipoles may disappear at some k to mimic the
dynamics of the dipole numbers. As shown in Figure 2, we plot
results at time k = 1, 15, 22, 35 with the ground-truth dipole
number is 4,2,3,4, respectively. The estimation in k = 35 is
much better than that in k = 1 as the particle filter obtained
more data. It is difficult to show the amplitude estimates in the
graph, the amplitude RMSE is similar to that in Table 1.

The k-means clustering [16] used in [6] needs to spec-
ify a fixed number of clusters before implementing, which
constrains the localization performance. DMAPF algorithm
addresses the problem by applying the agglomerative cluster-
ing, which classifies data with a dynamical number of clusters.

4.2 Real data
We also test the algorithm using a set of real MEG data. The
data were sampled at 1KHz, through a lowpass filter to 40Hz.
An auditory stimulus appeared at both left and right side of the
subjects. The data were epoched from -100ms and recorded
until +400ms, and were averaged over at least 100 events
under the same setting. As shown in Figure 3, the estimations
of both DMAPF and a standard Minimum Norm Estimation
(MNE) [8] are ploted in the same figures. The coloured area
is the scaled plot from MNE, the colour bars on the right
represents the strength of the MNE inverse solution in brain
cortex. We plot results at time +240ms, +260ms and +300ms;
each detected 4, 3, and 4 dipoles, respectively.

(a) +240 ms.Left (b) +260 ms.Left (c) +300 ms.Left

(d) +240 ms.Right (e) +260 ms.Right (f) +300 ms.Right

Fig. 3. DMAPF and MNE comparision in real MEG data,
upper/lower rows show right/left hemisphere respectively. The
red triangle denotes the estimated location, the colorbar shows
the amplitude of MNE estimates.

5. CONCLUSION

This paper proposed a joint detection and particle filtering ap-
proach for MEG multiple dipolar sources localization problem.
The algorithm is tested and compared with previous algorithm
in both simulated and real data. The results demonstrate that
the proposed algorithm improves the multi-dipole tracking
performance.
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[1] M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, and

O.V. Lounasmaa, “Magnetoencephalography: Theory,
instrumentation, and applications to noninvasive studies
of the working human brain,” Reviews of modern Physics,
vol. 65, no. 2, pp. 413–497, 1993.

[2] J.C. Mosher and R.M. Leahy, “Recursive MUSIC: a
framework for EEG and MEG source localization,” IEEE
Trans. on Biomedical Engineering, vol. 45, no. 11, pp.
1342–1354, 1998.

[3] K. Uutela, M. Hamalainen, and R. Salmelin, “Global op-
timization in the localization of neuromagnetic sources,”
IEEE Trans. on Biomedical Engineering, vol. 45, no. 6,
pp. 716–723, 1998.

[4] E. Somersalo, A. Voutilainen, and J.P. Kaipio, “Non-
stationary magnetoencephalography by Bayesian filter-
ing of dipole models,” Inverse Problems, vol. 19, pp.
1047–1063, 2003.

[5] C. Campi, A. Pascarella, A. Sorrentino, and M. Pi-
ana, “A Rao–Blackwellized particle filter for magne-
toencephalography,” Inverse Problems, vol. 24, no. 2, pp.
23–37, 2008.

[6] A. Sorrentino, L. Parkkonen, A. Pascarella, C. Campi,
and M. Piana, “Dynamical MEG source modeling with
multi-target Bayesian filtering,” Human Brain Mapping,
vol. 30, no. 6, pp. 1911–1921, 2009.

[7] A. Doucet, S. Godsill, and C. Andrieu, “On sequential
Monte Carlo sampling methods for Bayesian filtering,”
Statistics and Computing, vol. 10, no. 3, pp. 197–208,
2000.

[8] O. Hauk, “Keep it simple: a case for using classical
minimum norm estimation in the analysis of eeg and
meg data,” Neuroimage, vol. 21, no. 4, pp. 1612–1621,
2004.

[9] K.J. Friston, A.P. Holmes, K.J. Worsley, J.P. Poline, C.D.
Frith, and R.S.J. Frackowiak, “Statistical parametric
maps in functional imaging: a general linear approach,”
Human brain mapping, vol. 2, no. 4, pp. 189–210, 1994.

[10] G. Nolte, “The magnetic lead field theorem in the quasi-
static approximation and its use for magnetoencephalog-
raphy forward calculation in realistic volume conductors,”
Physics in Medicine and Biology, vol. 48, no. 22, pp.
3637 – 3652, 2003.

[11] R. Oostenveld, P. Fries, E. Maris, and J. Schoffelen,
“Fieldtrip: open source software for advanced analysis of
meg, eeg, and invasive electrophysiological data,” Com-
putational intelligence and neuroscience, vol. 2011, pp.
1, 2011.

[12] K.C. Gowda and G. Krishnan, “Agglomerative cluster-
ing using the concept of mutual nearest neighbourhood,”
Pattern Recognition, vol. 10, no. 2, pp. 105–112, 1978.

[13] M.F. Bugallo, T. Lu, and P.M. Djuric, “Target tracking
by multiple particle filtering,” in Proc. IEEE Aerospace
Conf., 2007, pp. 1–7.

[14] M.K. Pitt and N. Shephard, “Filtering via simulation:
Auxiliary particle filters,” Journal of the American Sta-
tistical Association, vol. 94, no. 446, pp. 590–599, Jun.
1999.

[15] M Stenroos, V Mäntynen, and J Nenonen, “A matlab
library for solving quasi-static volume conduction prob-
lems using the boundary element method,” Computer
methods and programs in biomedicine, vol. 88, no. 3, pp.
256–263, 2007.

[16] J.A. Hartigan and M.A. Wong, “Algorithm as 136: A
k-means clustering algorithm,” Journal of the Royal
Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100–108, 1979.

953


