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ABSTRACT

The paper presents an online estimation of parameters of a
multi-input renewal Markov process. The underlying model
is derived from the physiological generation of intramuscu-
lar electromyographic (iEMG) signals, which are recorded by
wire electrodes. The iEMG is the sum of several sparse spikes
trains and noise. An hidden Markov model, whose parameters
express the muscular activity, is developed. The time duration
between spikes is modeled with a discrete Weibull distribu-
tion, helping us to reduce the complexity of the estimation
done with the help of a Bayes filter.

Index Terms— Markov process, bayesian method, pa-
rameter estimation, Weibull distribution

1. INTRODUCTION

Several physiological signals play a major role in the regu-
lation and control of the body such as ElectroMyoGraphic
(EMG) signals that travel through muscles and can be col-
lected quite easily. Although these signals disclose a general
view of the body control scheme, it has been shown that they
could be analyzed [1] or used in quite a various range of ap-
plication, such as for medical therapy [2], control of an ex-
oskeleton [3], or control of a prosthesis [4, 5].

The decoding part of the signal has been heavily studied.
Extraction and classification of features from full wave recti-
fication signals is used to estimate users’ intentions. Various
approaches have been tested in previous works [6], especially
based on non-invasive EMG signals. However, these studies
are limited because of the extreme variability in the collected
signal between users and within the user himself, and the long
training of the decoding system. Moreover, these signal pro-
cessing techniques only estimate a finite set of motions, with-
out combinations of more than one movement. In addition to
surface EMG signals, iEMG can also be used as source for the

control of prosthetic devices. iEMG signals, if correctly de-
coded, can be viewed as the direct control of the brain upon
muscles since the constituent sources are the output signals
from the spinal cord [7].

In this paper, we present a new approach to achieve an on-
line decomposition of an iEMG signals, based on a modeling
of signals as a sum of filtered sparse binary spike trains with
known impulse responses. In the single input channel case,
this can be related to impulse deconvolution problems [8, 9].
It can be also related to change detection in semi-Markov
models [10, 11, 12]. In a previous paper [13], we proposed
a method based on a time-independence assumption of input
spike trains. We propose here to model the inter-spike inter-
val by means of a renewal process based on a discrete Weibull
distribution introduced by Nakagawa et al. [14] following the
study on the inter-spike intervals law of de Luca et al. [15]
in the continuous case. Although the arrival of spikes is a
continuous-time process, data are sampled. The approxima-
tion of discrete time location for spikes will lead to a simpler
model (see previous references).

The model of the signal and the Markov representation are
presented in section 2. The online estimation of parameters
is presented in section 3. Results on simulated signals and
experimental ones are made in section 4.

2. MARKOV REPRESENTATION

2.1. Signal modelling

As observed by Stashuk [16], the iEMG signals can be mod-
eled as the sum of linearly filtered spike trains. The spikes
before convolution are the activation signals sent by motoneu-
rons to the muscle to excite a cluster of muscle fibres. When
the cluster of fibers innervated by a motor neuron is activated,
a train of motor unit action potentials (MUAP) is generated.
Finally, the sum of MUAP trains coming from several mo-
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toneurons is the so-called iEMG signal.
The problem is to achieve an online decomposition of a

multi-input mono-output signal, where patterns may arise nat-
urally due to the sum of convoluted spike trains, named super-
position of MUAP shapes.

The linearity in summation of electrical signals justifies
the proposed model of the observed EMG signals by Farina
et al. [17].

y[n] =

M∑
i=1

(hi ∗ ui)[n] + w[n] (1)

where ui are signals corresponding to unknown spike trains,
hi are supposed to be known corresponding to MUAP shapes,
w is the measurement noise,M is the number of motoneurons
firing at discrete time n. Eq.(1) describes a model where neu-
ral control signals (the spikes trains) are filtered and summed,
and where the additive noise w is assumed independent, zero-
mean, Gaussian with unknown variance σ2. The number M
of firing motoneurons is assumed to be known. Moreover, the
filters are assumed to be time-invariant.

2.2. Input spikes trains

Each input sequence (ui[n])n∈Z is a binary discrete process,
independent of other sequences (uj [n])n∈Z for all j 6= i.
In a previous paper [13], these sequences were assumed to
be time-independent but, actually, physiological constraints
make this assumption rather unrealistic. We propose to base
these sequences on discrete-time and discrete-valued renewal
processes [18].

For each input channel, inter-spikes intervals ∆i[N ] - dis-
crete time length between spikes numberedN andN+1 - are
supposed to be independent and identically distributed, with
a parameterized probability mass function (PMF) defined by
P(∆i[N ] = t|Θi), for all integer t ≥ 1, where Θi is the pa-
rameter.

Let’s introduce the ongoing sojourn times (Ti[n])i∈[1:M ];
for each channel, Ti[n] is the discrete duration since the
last spike (then, with the Kronecker delta function: ui[n] =
δ (Ti[n])).

Using the so-called failure rate (well known in reliability
theory [14]):

rΘi(t) =
P(∆i[N ] = t|Θi)

P(∆i[N ] ≥ t|Θi)
(2)

The transition distribution of Ti[n] writes:

P(Ti[n+ 1] = t|Ti[n],Θi)

=


rΘi(Ti[n] + 1) if t = 0

1− rΘi(Ti[n] + 1) if t = Ti[n] + 1

0 elsewhere
(3)

We have chosen the discrete Weibull distribution [14] with
three parameters Θ = (t0, β, Tr). t0 represent an approxi-
mated median of the distribution, β is a concentration param-
eter and Tr is a shift in the acceptable time values - which
here correspond to the refractory period when muscle fibers
loosen up, which is well-known in EMG signals [7]. For all
t ≥ Tr + 1:

P(T = t|Θ) = e−
(
t−Tr−1
t0−Tr

)β
− e−

(
t−Tr
t0−Tr

)β
This renewal distribution is chosen because it corresponds to
a closed-form failure rate rΘ; for all t ≥ Tr + 1:

rΘ(t) = 1− e
(
t−Tr−1
t0−Tr

)β
−
(
t−Tr
t0−Tr

)β
The special case Tr = 0 and β = 1 which gives a constant
failure rate, a geometric interspike interval, and independent
input spikes trains, corresponds to the paper [13]. Here, the
value (t0−Tr)Γ(1+1/β)+Tr can be considered as a measure
of activation rate of the muscles in the case where t0 is large
[15], which can be used in prosthesis control for example.

2.3. Markov representation

Assuming impulse responses are known and of finite length
L, smaller than the refractory period Tr, one obtains a Markov
representation, where the state vector is composed of: T [n] =
[Ti[n]]i∈[1..M ] the M sojourn times and Θ, the concatenation
of the M vectors of parameters related to input dynamics.

The Markov representation is then
Θ constant
P(T [n+ 1]|T [n],Θ) from Eq.(3)
y[n] = [ϕ(T1[n]) . . . ϕ(TM [n])]H + w[n]

(4)

where y is the noisy output of the system, and ϕ is a vector
of size L full of zero, except an one in position Ti[n] + 1 in
the case where 0 ≤ Ti[n] < L. The observation model is
equivalent to the representation (1).

3. ONLINE PARAMETER ESTIMATION

3.1. Principle

We have to recursively estimate the Weibull parameters of ev-
ery input channels by means of the growing data sequence
Y n = [Y [1] . . . Y [n]].

The main idea of the global estimation process is to esti-
mate Weibull parameters for all possible path tni of the saw-
tooth sequences Tni ([Tni ]i∈[1..M ] is denoted Tn). The final
estimation of these parameters is then the mean value over
all possible sawtooth sequences weighted by their posterior
probabilities.

Θ̂(Y n) =
∑
tn

E{Θ|Tn}P(Tn=tn|Y n) (5)
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By means of Bayes filter, the probability can be expressed
recursively as:

P(Tn = tn|Y n) ∝ g(y[n]− ŷ(tn), σ2)× (6)

P(T [n]=t[n]|Tn−1=tn−1)P(Tn−1=tn−1|Y n−1)

where ŷ(tn) is the simulated ouput at time n for input se-
quence tn computed with the respresentation (4) and g(., σ2)
stands for the probability density function of the zero-mean
Gaussian law with variance σ2.

Then, using the law of total probability, the independence
of all inputs, and Eq.(3), the middle term writes:

P(T [n]=t[n]|Tn−1) =

M∏
i=1

. . . (7)
E{rΘi(Ti[n− 1] + 1)|Tn−1} if ti[n]=0

1− E{rΘi(Ti[n− 1] + 1)|Tn−1} if ti[n]=Ti[n− 1] + 1

0 elsewhere

3.2. Dynamic parameters

The expected value of the failure rate does not have a closed-
form solution, so we first choose to linearize the failure rate
around the expected value of the parameter E{rΘi(t)|Tni } =
rE{Θi|Tni }(t). We propose to replace the computation of
E{Θi|Tni } by a simple estimation θ̂i(T

n
i ) with maximum

likehood (ML) based estimator which leads to a practical
online implementation. Let us note Tni∗ = (Ti[2], . . . , Ti[n]),
the sequence Tni in which the first term has been dropped.
Although the actual ML estimation for a given observation tni
of the sawtooth sequence is arg maxθ P(Tni = tni |Θi = θ),
we will use in this paper

θ̂(tni ) = arg max
θ

P(Tni∗=t
n
i∗|Θi=θ, T [1]=t[1])

= arg min
θ
− 1

n
ln P(Tni∗=t

n
i∗|Θi=θ, T [1]=t[1])︸ ︷︷ ︸
Jtn
i

(θ)

This is a standard way to handle end-effect when starting a re-
cursion (for example in the so-called autocovariance method
for estimating parameters of autoregressive models [19]).
Using Markov property of sawtooth sequences the objective
function Jtn recursively writes, for all n ≥ 2, by means of
transition probability:

Jtn(θ) = − 1

n
ln P(T [n]=t[n]|Θ=θ, T [n− 1]=t[n− 1])︸ ︷︷ ︸

−Qtn (θ)

+ (1− 1

n
)Jtn−1(θ)

Note that, if θ̂(tn−1) attains the minimum of Jtn(θ), the first
derivative of the objective function gives [20]

dJtn(θ̂(tn−1))

dθ
=

1

n

dQtn(θ̂(tn−1))

dθ

This derivative is straightforward to compute when using the
transition probability produced by a discrete Weibull law. The
objective function is recursively minimized by a stochastic
gradient update

θ̂(tn) = θ̂(tn−1)− 1

n
G−1
tn
dQtn(θ̂(tn−1))

dθ
(8)

Gtn =
1

n

dQtn(θ̂(tn−1))

dθ

dQtn(θ̂(tn−1))

dθ

>

+ (1− 1

n
)Gtn−1

where the Riemannian metric tensor is updated for all n ≥ 2
and can be interpreted as a quasi-Newton online optimization
[21, 22].

3.3. Algorithm

In practice, it is impossible to explore all the possible paths
of sawtooth signals. Thus, at each time index n, all paths are
completed with all possible forks, the posterior probability is
computed thanks to formulae (6), and onlyK paths with max-
imum posterior probability are kept, where K is a parameter
of the method. Then, the estimated Weibull parameters are
computed with Eq.(8) as a mean over different paths weighted
by their posterior probability.

4. SIMULATIONS AND EXPERIMENTS

Simulated signals are created upon the model in Eq.(1).
Multi-input spike trains are drawn from the failure rate of
Eq.(2) following independently, on each channel, a time-
discrete Weibull process at a sample frequency of 10 kHz, and
convolved with time-invariant finite impulse filters. Those fil-
ters are taken on true iEMG signals. The parameters t0,i
range from 30 ms to 50 ms, βi range from 2 to 7, and Tr is
set at 30 ms. The experimental iEMG signals were recorded
from the extensor digitorum muscle of a healthy subject (age
21 years), with a pair of wire electrodes made of Teon coated
stainless steel (A-M Systems, Carlsborg, WA, USA; diameter
50µm) inserted into the muscle belly with a 25 G needle.
The iEMG signals were amplied bipolarly (Counterpoint
EMG, DANTEC Medical Skovlunde, Denmark), band-pass
ltered (500 Hz-5 kHz), and sampled at 10 kHz. The subjects
performed isometric contractions at 5% of the maximal vol-
untary contraction force (MVC) to gather iEMG signals over
a period length of approximately one minute.

The validation on experimental data was performed by
comparing the results of the proposed method with those pro-
vided as reference results by manual decomposition of an ex-
pert operator using the EMGLAB tool [23]. The proposed
method was applied in a fully automatic way. The number of
selected paths K is set to 64.

On both Fig.1 and Fig.2, the upper graphs show a detail
view of the input signal (dashed line) and the reconstructed
signal (solid line), and for each source, true or expert’s spikes
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Fig. 1: Reconstruction of the simulated signal and estimation
of parameters t0 and β for four simulated sources

train (circle) and reconstructed spikes train (dot inside circle).
The middle and lower graphs present the estimations of the
discrete Weibull law parameters.

For the simulation results, the true and estimated spike
trains are very close. The t0,i parameters converged on their
true values (straight lines) after one second, while for βi pa-
rameters, two seconds were necessary. Note the characteristic
saw aspects of the estimation graphs. For the experimental re-
sults, the reconstruction appear to be close to the true iEMG
signal. The decomposition of the sum of spikes trains wass
well achieved. However, there are differences between the
expert’s decomposition and the proposed method. Around
1.0 second, there is a switch between the second and third
sources: visually the reconstructed signal from our method
is better than the one guessed by the expert. This may be
due to a close shape and amplitude of the two MUAP shapes.
Around 1.4 seconds, a spike is missed by both the expert and
the decomposition algorithm: the shape is unknown, and thus
can not be recognized. The estimations of discrete Weibull
law parameters look stable.

The difference between the actual signal and the recon-
structed output is expressed by a root mean square error:
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Fig. 2: Reconstruction of the iEMG signal and estimation of
parameters t0 and β for four firing motoneurons

0.0549 for the proposed method and 0.0509 for the expert (to
be compared to the standard deviation of the signal, 0.0387).
Although both methods produced different decompositions,
they explained correctly the actual iEMG signal.

5. CONCLUSION

This paper proposes a Markov model of a multiple-input
channel, single-output channel system. The explicit expres-
sion of the hazard rate allow to compute an online estimation
of system parameters by the mean of a quasi-Newton like
method. The results obtained in simulation and on experi-
mental data are really conclusive, even though some draw-
backs have to be studied. The estimated parameters caught
up very quickly the true parameters. Improvements of the
method are coming from the introduction of non Bernoulli
distribution for spike arriving, but a discrete-time Weibull
distribution.

Some hypotheses have to be addressed to make the
method usable: online estimation of response filters, num-
ber of input channels, estimation of the noise variance.
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