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ABSTRACT 
 
This paper presents a time–frequency approach to detect 
perinatal hypoxia by characterizing the nonstationary nature 
of heart rate variability (HRV) signals. Quadratic time–
frequency distributions (TFDs) are used to represent the 
HRV signals. Six features based on the instantaneous 
frequency (IF) of the lower frequency components of HRV 
signals are selected to establish a classifier using support 
vector machine. The classifier is trained and tested using the 
signals recorded from a neonatal piglet model under a 
controlled hypoxic condition, which provides reliable 
annotations on the data. The method shows superior 
performance in the detection of hypoxic epochs with 
sensitivity (89.8%), specificity (100%) and total accuracy 
(94.9%) compared with that based on frequency domain 
features, indicating that nonstationarity should be taken into 
account for a more accurate assessment of the newborn 
status with possible hypoxia when analyzing HRV signals. 
 

Index Terms— time–frequency distribution, heart rate 
variability, nonstationarity, perinatal hypoxia 
 

1. INTRODUCTION 
 
Perinatal hypoxia, occurring due to a variety of events such 
as antepartum maternal hypotension and intrapartum 
placental abruption, is a major cause of cerebral injury, 
accounting for a large amount of morbidity and mortality in 
neonates [1]. Early detection of hypoxia is of great clinical 
importance to reduce the risk of adverse outcomes following 
the insult. Moreover, it may help clinicians plan and conduct 
appropriate therapeutic strategies promptly to prevent or 
alleviate the consequent brain injury.  

Current approaches for hypoxia detection in the fetus 
depend primarily on the analysis of cardiotocography (CTG) 
[2]. This method is based on visual pattern recognition of 
trended data by trained clinicians, but has high inter- and 
intra-observer variability due to subjectivity [3]. This has 
led to sufficient motivation to explore automated and 
objective approaches to detecting hypoxia [2]. 

Heart rate variability (HRV) signals are defined as the 
variation of inter-heartbeat intervals. Since these signals can 
be non-invasively monitored, they have drawn much 

attention in designing effective detection methods for 
perinatal hypoxia. Frequency domain analysis of HRV 
signals provides recognized features as assessment of the 
neurological cardiovascular regulation [4]. Fast Fourier 
transform and autoregression methods are predominately 
used in estimating the spectral features such as the power 
within bands of clinical significance. Clinical studies have 
shown that these features are indicative of hypoxic insult but 
with a low specificity [6], which may cause unnecessary 
interventions without improvement in fetal outcome [3]. 
Other studies on automated methods for hypoxia detection 
involve other HRV features such as nonlinear indices [7], 
[8] and system model parameters [9].  

Nonstationarity is a natural characteristic of HRV signals 
and therefore, without carefully controlling the experimental 
conditions, the HRV features may be significantly 
contaminated by nonstationarity [11]. This fact may be the 
potential reason for the low specificity of hypoxia detection 
methods which use frequency domain features of HRV 
signals. Despite this, the stationary methods still prevail in 
clinical research and practice due to their widely-accepted 
physiological relevance (where assuming the signals are 
stationary or at least quasi-stationary) [4]. It has also been 
the case in the study of perinatal hypoxia detection.  

Taking the nonstationarity of HRV signals into account, 
wavelet analysis has been used to estimate the scale-
dependent coefficients as part of the feature set in 
combination with fetal pulse oximetry (FSpO2) [10]. In [12], 
empirical mode decomposition was used to extract features 
of nonstationary characteristic; however, these features are 
not of definite physiological relevance.  

Quadratic time–frequency distributions (TFDs) represent 
the signal energy distribution simultaneously in both time 
and frequency domains, and capture the nonstationarity of 
multi-component signals, such as HRV, as well as provide a 
simple and accurate way to estimate instantaneous 
frequency (IF) [13]. TFDs have been widely used in HRV 
analysis due to these advantages [14], but have not yet been 
applied in feature extraction for hypoxia detection. 
Therefore, TFDs are used in the present study to estimate 
the IF and associated features, which are then applied in 
building the classifier for hypoxia detection. 

Herein, we present an automatic hypoxia detection 
method using TFD-based features extracted from HRV 
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signals. The features are classified using a support vector 
machine. The method is trained and tested using the data 
collected from a piglet model. 

 
2. HRV DATA AND TFD-BASED METHODS 

 
2.1. Experiment, data recording and pre-processing 
 
In this study, we used 21 neonatal piglets under hypoxic 
condition to simulate perinatal hypoxia in human babies. 
This approach has been used widely in the 
pathophysiological studies of perinatal hypoxia because 
piglets have similar ontogenesis of nervous and 
cardiovascular systems to human babies [15]. On the other 
hand, although newborn HRVs have been used to explore 
effective hypoxia detection methods, a big concern is the 
annotation of the data. The class of the data 
(normal/abnormal) is generally determined either by expert 
annotation according to CTG analysis guidelines or by 
umbilical artery blood pH or base deficit measured right 
after delivery [8], [12]. The first approach is considered 
subjective due to the inter- and intra-observer variability [3], 
while the second method has no consensus on the threshold 
of blood pH or base deficit separating the classes, which is a 
major uncertainty that affects the detection performance [7]. 
In contrast, the animal model experiment using controlled 
hypoxia enables a definite and accurate annotation of the 
data, guaranteeing the effectiveness of the proposed method.  

In this experiment, the piglets were anaesthetized and 
continuously monitored. The respiration of the animals was 
controlled using a neonatal ventilator at a rate of 30 breaths 
per minute (BPM). Hypoxia was induced by lowering the 
fraction of inspired oxygen (FiO2) to 0.1 for 30 minutes. A 
detailed description of the experiment can be found in [15]. 

Electrocardiogram (ECG) signals for HRV analysis were 
recorded with Powerlab (ADInstruments, Sydney, Australia) 
at a rate of 1 kHz. All the following signal processing was 
implemented using MATLAB (Version R2011b, Mathworks 
Inc, Natick, MA). A 5 minutes epoch of ECG before and at 
the beginning of the hypoxic insult were converted to HRV 
signals as follows: A Hilbert transform-based method was 
first used to locate the R-peaks and then HRV signals were 
generated accordingly [18]. The outliers were removed and 
the resulting signals resampled at 4 Hz by cubic spline 
interpolation. The mean value and linear trend were 
subtracted from the resampled signals. The first 1024 
samples (≈4.27 minutes) were used for TFD analysis. This 
data size was chosen because it is not only suitable for fast 
processing but also close to the required time duration for 
the identification of hypoxia that is of prognostic 
significance and needs clinical intervention [2]. 

 
2.2. Time–frequency analysis of HRV signals 
 
Time–frequency distributions have been widely used in 
characterizing time-varying multi-component signals, such 

as HRV. Given an analytic signal 𝑧(𝑡), the general form of a 
quadratic TFD 𝜌𝑧(𝑡, 𝑓) can be expressed as [13]:  
 

𝜌𝑍(𝑡, 𝑓) = ∫∫𝐺(𝑡 − 𝑢, 𝜏) 𝑧 �𝑢 + 𝜏
2
�  

 𝑧∗ �𝑢 − 𝜏
2
� 𝑒−𝑗2𝜋𝑓𝜏𝑑𝑢𝑑𝜏 

 
(2) 

 
where 𝐺(𝑡, 𝜏)  is a time-lag kernel, used to suppress the 
cross-terms generated as a result of the quadratic nature of 
TFD, and * represents complex conjugation. Among a 
variety of TFDs in the literature, the spectrogram and 
modified B-distribution (MBD) have shown high quality in 
the representation of HRV signals in terms of resolution 
preservation and cross-term reduction [19], whereas the 
TFD with the compactly supported separable Gaussian 
kernel (CSSGD) is a most recently proposed TFD with good 
performance [16]. In this study, we compare these TFDs in 
characterizing piglet HRV signals according to the 
consequent hypoxia detection outcomes. Table 1 lists the 
formulas of these kernels in time-lag domain and their 
parameters used in the analysis. 

 
Table 1: TFD kernels in the time-lag domain. 
TFD Kernel 𝐺(𝑡, 𝜏) Parameters 

Spectrogram 𝑤(𝑡 + 𝜏
2
)𝑤(𝑡 − 𝜏

2
)  

Hanning 
window, 
Size = 75 

MBD 𝑐𝑜𝑠ℎ−2𝛽(𝑡)
∫ 𝑐𝑜𝑠ℎ−2𝛽(ϛ)𝑑ϛ

  β = 0.03 

CSSGD 𝑒2𝐶+
𝐶𝐷2

𝜏2−𝐷2 ∫ 𝑒
𝐶𝐷2

𝜐2−𝐷2
∞
−∞ 𝑒−𝑗2𝜋𝑡𝜐𝑑𝜐  

C = 2,  
D = 15 

 
2.3. Time–frequency feature extraction and selection 
 
There are three components that are generally recognized in 
HRV. The high frequency (HF) component reflects the 
vagally-mediated respiratory sinus arrhythmia; the low 
frequency (LF) is associated with both sympathetic and 
vagal regulation; and the very low frequency (VLF) is 
linked to various neural and hormonal effects. We defined 
the frequency bands of interest as VLF (0-0.02 Hz), LF 
(0.02-0.1 Hz) and HF (0.45-0.55 Hz), where the power is 
most concentrated [17]. Fig.1 illustrates the representation 
of piglet HRV epochs under hypoxic and non-hypoxic 
conditions using the MBD. 

We used the IF of each component as the dynamic 
feature and estimated them by means of the local maxima 
from the time–frequency representation. Given a temporal 
slice in the TFD, the IF was estimated by [5]: 
 

𝑓𝑖
(𝑚)(𝑡) = 𝑎𝑟𝑔 �𝑚𝑎𝑥

𝑓
𝜌𝑧(𝑡, 𝑓)� ,  

                   𝑚 ∈ {𝑉𝐿𝐹, 𝐿𝐹,𝐻𝐹} 

 
 

(5) 
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Fig.1: MBD ( 𝛽 = 0.03 ) of piglet HRV epochs under 
hypoxic and non-hypoxic conditions. 
 
where 𝑚 denotes the component. Another feature based on 
the IF is the local maximal value of TFD at the IF 𝑓𝑖

(𝑚)(𝑡), 
calculated as: 
 

�̂�𝑖
(𝑚)(𝑡) = 𝜌𝑧 �𝑡, 𝑓𝑖

(𝑚)(𝑡)� ,𝑚 ∈ {𝑉𝐿𝐹, 𝐿𝐹,𝐻𝐹} (6) 

 
The mean and standard deviation of 𝑓𝑖

(𝑉𝐿𝐹)
, 𝑓𝑖

(𝐿𝐹)
, 

�̂�𝑖
(𝑉𝐿𝐹) , �̂�𝑖

(𝐿𝐹) and �̂�𝑖
(𝐻𝐹) over time were calculated as 

potential features. Since the respiration rate remained 
constant at 0.5 Hz (equivalent to the ventilation rate at 30 
BMP), the HF component (i.e. 𝑓𝑖

(𝐻𝐹)
) was constantly equal 

to 0.5 Hz throughout the experiment; thus only �̂�𝑖
(𝐻𝐹)was 

taken into consideration. We only considered these simple 
statistical nonstationary features to investigate the 
potentiality of time–frequency analysis in designing 
effective hypoxia detection approach in this preliminary 
study. More sophisticated features will be taken into account 
in future studies.  

 

 
Fig. 2: Diagram of the proposed hypoxia detection method. 

 
In order to make a complete and fair comparison 

between the frequency domain approach and the time– 
frequency approach, the following features were extracted 
from the frequency domain representation. The power 
spectral density (PSD) of HRV epochs was obtained using 
Fast Fourier transform and the power in the three bands as 
previously defined was computed. The normalized power 
for three components and the ratio of LF over HF, according 
to the standard [4], were calculated as the features to be fed 
into the classifier. 

To select the most effective features, the receiver 
operating characteristics (ROC) was used to assess the 
capability of discriminating hypoxic epochs from the non-
hypoxic epochs, and the area under the ROC curve was used 
as a metric. We selected the best 6 features to construct the 
classifier by setting the AUC threshold as 85% out of the 
unit area. 

 
2.4. Classification 
 
Support vector machine (SVM) was used to establish the 
classifier based on the selected features, as it has been used 
with success in most studies of automated hypoxia detection 
methods [7]–[9]. Moreover, it makes our results comparable 
with theirs from the perspective of classifier. Three kernel 
functions were considered in this work, which were 
quadratic kernel, polynomial kernel and Gaussian radial 
basis function (GRBF) kernel respectively. Regarding the 
parameter setting, the polynomial kernel came with the 
order equal to 3, and the scaling factor in GRBF kernel was 
chosen as 1. The hyperplane separating the two classes were 
found by least squares method. 

The diagram of the proposed hypoxia detection method 
is illustrated in Fig.2. 
 

3. RESULTS AND DISCUSSION 
 
Considering the limited dataset, we performed 7-fold cross-
validation randomly on the dataset with 50 iterations. 
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Results presented are the averaged values of all iterations. 
Sensitivity, specificity and accuracy were used as criteria to 
evaluate the performance of the proposed hypoxia detection 
method. 

In the feature selection, the best 6 features for the 
threshold AUC>85% consist of the mean and standard 
deviation of �̂�𝑖

(𝑉𝐿𝐹) , �̂�𝑖
(𝐿𝐹) and 𝑓𝑖

(𝑉𝐿𝐹)
 for all TFDs. As an 

example, the AUC results for the features using MBD are 
tabulated in Table 2. The effective features are derived from 
VLF and LF component, indicating a significant change in 
the lower frequency bands regulated by both sympathetic 
and parasympathetic nervous systems.  

With respect to the classifier, the results show that the 
SVM with quadratic kernel is best-suited to PSD features 
(Table 3). In contrast, the GRBF kernel outperforms the 
other kernel functions in building the SVM classifier with 
superior overall outcomes based on TFD features (Table 3), 
which is in agreement with the result in the literature [7]–[9].  

Regarding the detection results, the TFD features show 
higher performance compared with PSD features in general 
(Table 3). Specifically, MBD-based features combined with 
the SVM classifier of GRBF kernel have the best 
performance in general with 89.8% in sensitivity, 100% in 
specificity and 94.9% in accuracy. Apart from the 
effectiveness of SVM kernel, this may also be accounted for 
by the lag-independent kernel of MBD, which is more 
accurate in characterizing the temporally slowly-varying 
components of HRV signals than the kernels of the other 
TFDs [13], [19]. The results also demonstrate that the 
proposed method may not only detect the hypoxic insult 
with a high accuracy but also effectively avoid false positive 
detections, which may reduce unnecessary clinical 
management that could cause adverse side effects. 

In comparison of feature effectiveness with other 
proposed methods, conventional frequency domain features 
of HRV have been used together with time domain features 
[7], parameters from CTG system model [9] and nonlinear 
indices [8]. Although these features show a certain degree of 
effectiveness, failure in considering the nonstationary nature 
of HRV signals may be a reason of the relatively low 
sensitivity, specificity and accuracy.  

 
4. CONCLUSION 

 
Accurate detection of perinatal hypoxia plays a significant 
role in reducing the risk of neonatal brain injury. In this 
study, we propose a hypoxia detection method using a SVM 
classifier with TFD-based features extracted from HRV 
signals. Tested using the data recorded from a piglet model 
under controlled hypoxic condition, the method shows high 
sensitivity, specificity and accuracy in the detection. The 
result also indicates that nonstationarity should be 
considered in assessing the newborn status with possible 
hypoxia when using HRV signals. In future work, TFDs 
with better TF resolution and IF estimation methods with 
higher accuracy will be applied to improve the detection 

performance [19]. On the other hand, the proposed method 
needs to be tested on accurately labeled data from human 
neonates to become clinically applicable in hypoxia 
detection. 
 
Table 2: The AUC values for MBD-based features (std 
stands for standard deviation). 
Feature AUC (%) Feature AUC (%) 

mean{�̂�𝑖
(𝑉𝐿𝐹)} 99.3* mean{𝑓𝑖

(𝑉𝐿𝐹)
} 90.3* 

std{�̂�𝑖
(𝑉𝐿𝐹)} 98.9* std{𝑓𝑖

(𝑉𝐿𝐹)
} 89.6* 

mean{�̂�𝑖
(𝐿𝐹)} 99.8* mean{𝑓𝑖

(𝐿𝐹)
} 73.7 

std{�̂�𝑖
(𝐿𝐹)} 99.3* std{𝑓𝑖

(𝐿𝐹)
} 78.5 

mean{�̂�𝑖
(𝐻𝐹)} 77.3   

std{�̂�𝑖
(𝐻𝐹)} 76.6   

* Selected features for classifier construction. 
 
Table 3: Detection results for SVM classifiers with PSD 
and different TFD features. 
SVM Index PSD Spectrogram MBD CSSGD 

Q
ua

dr
at

ic
 Sensitivity (%) 84.7 75.7 77.9 81.3 

Specificity (%) 82.3 95.3 98.3 99.9 

Accuracy (%) 83.5 85.5 88.1 90.6 

Po
ly

no
m

ia
l Sensitivity (%) 84.4 77.2 88.0 85.9 

Specificity (%) 77.0 95.5 99.8 99.4 

Accuracy (%) 80.7 86.4 93.9 92.7 

G
R

B
F 

Sensitivity (%) 81.3 87.2 89.8 90.5 

Specificity (%) 82.8 95.2 100 95.2 

Accuracy (%) 82.0 91.2 94.9 92.9 
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