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ABSTRACT

Sonography techniques use multiple transducer elements for tissue
visualization. Signals detected at each element are sampled prior to
digital beamforming. The required sampling rates are up to 4 times
the Nyquist rate of the signal and result in considerable amount of
data, that needs to be stored and processed. A developed technique,
based on the finite rate of innovation model, compressed sensing
(CS) and Xampling ideas, allows to reduce the number of samples
needed to reconstruct an image comprised of strong reflectors. A
significant drawback of this method is its inability to treat speckle,
which is of significant importance in medical imaging. Here we
build on previous work and show explicitly how to perform beam-
forming in the Fourier domain. Beamforming in frequency exploits
the low bandwidth of the beamformed signal and allows to bypass
the oversampling dictated by digital implementation of beamforming
in time. We show that this allows to obtain the same beamformed im-
age as in standard beamforming but from far fewer samples. Finally,
we present an analysis based CS-technique that allows for further re-
duction in sampling rate, using only a portion of the beamformed sig-
nal’s bandwidth, namely, sampling the signal at sub-Nyquist rates.
We demonstrate our methods on in vivo cardiac ultrasound data and
show that reductions up to 1/25 over standard beamforming rates are
possible.

Index Terms— Array Processing, Beamforming, Compressed
Sensing, Speckle, Ultrasound

1. INTRODUCTION

Diagnostic ultrasound has been used for decades to visualize body
structures. The overall imaging process is described as follows: An
energy pulse is transmitted along a narrow beam. During its prop-
agation echoes are scattered by acoustic impedance perturbations
in the tissue, and detected by the elements of the transducer. Col-
lected data are sampled and digitally processed in a way referred
to as beamforming, which results in signal-to-noise ratio (SNR) en-
hancement. Such a beamformed signal forms a line in the image.

According to the classic Shannon-Nyquist theorem [1], the sam-
pling rate at each transducer element should be at least twice the
bandwidth of the detected signal. Rates up to 4 times the Nyquist
rate are required in order to avoid artifacts caused by digital imple-
mentation of beamforming [2]. Taking into account the number of
transducer elements and the number of lines in an image, the amount
of sampled data that needs to be digitally processed is enormous, mo-
tivating methods to reduce sampling rates. Reduction of processing
rate is possible within the classical sampling framework by exploit-
ing the fact that the signal is modulated onto a carrier and occupies
only a portion of its entire baseband bandwidth. Accordingly, mod-
ern systems digitally down-sample the data at the system’s front-end.

However, this does not change the sampling rate since demodulation
takes place in the digital domain. In addition, the processing rate
may be reduced up to 1/4 of the sampling rate, but the signal be-
comes complex in this setup, and the number of samples effectively
is only twice smaller.

A different approach to sampling rate reduction is introduced in
[3]. Tur et. al. regard the ultrasound signal detected by each receiver
within the framework of finite rate of innovation (FRI) [4], model-
ing it as L replicas of a known pulse-shape, caused by scattering of
the transmitted pulse from reflectors, located along the transmitted
beam. Such an FRI signal is fully described by 2L parameters, cor-
responding to the replica’s delays and amplitudes. These parameters
can be extracted from a small set of the signal’s Fourier series co-
efficients. A mechanism, referred to as Xampling, derived in [5],
extracts such a set of coefficients from 4L real-valued samples. This
work is continued in [6], where Wagner et. al. introduce a general-
ized scheme, referred to as compressed beamforming, which allows
to compute the Fourier series coefficients of the beamformed signal
from the low-rate samples of signals detected at each element. The
problem of reconstruction of the beamformed signal from a small
number of its Fourier series coefficients is solved via a compressed
sensing (CS) technique, while assuming a small number L of repli-
cas. This approach allows to reconstruct an image comprised of
macroscopic perturbations, but cannot treat the speckle, which is of
significant importance in medical imaging.

In our work we extend the notion of compressed beamforming
to beamforming in frequency and show explicitly how to perform it.
Beamforming in frequency exploits the low bandwidth of the beam-
formed signal and allows to bypass the oversampling dictated by the
digital implementation of beamforming in time. We reconstruct the
beamformed signal perfectly with a simple inverse discrete Fourier
transform (IDFT) from a small set of its discrete Fourier transform
(DFT) coefficients, that are computed from low-rate samples of in-
dividual signals. We show that beamforming in frequency allows to
preserve the integrity of an image with 7 fold reduction in the num-
ber of samples used for its reconstruction.

Finally, we introduce an analysis based CS-technique [7] for sig-
nal reconstruction using only a portion of the beamformed signal’s
bandwidth. We demonstrate our methods on in vivo cardiac ultra-
sound data and show that reductions of up to 1/25 of beamforming
rate and up to 1/3 of Nyquist rate are possible. The proposed re-
construction method outperforms the classic synthesis CS approach
used in [6], when the same number of samples is used.

The rest of the paper is organized as follows: in Section 2, we
review beamforming in time. In Section 3 we describe the principles
of frequency domain beamforming. In Section 4 we describe how
the reduction in sampling rate is achieved. In Section 5 we discuss
two possible CS approaches to signal reconstruction.
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2. BEAMFORMING IN TIME

Most modern imaging systems use multiple transducer elements to
transmit and receive acoustic pulses. Appropriate processing of the
signals detected by the individual array elements allows to enhance
the quality of the resulting image. The most commonly used tech-
nique, referred to as beamforming, increases SNR by averaging the
individual signals after their alignment with appropriate time-delays.
We begin by describing the beamforming process which takes place
in a typical B-mode imaging cycle. Our presentation is based mainly
on [8] and [6].

Fig. 1. M receivers aligned along the x axis. An acoustic pulse is
transmitted at direction θ. The echoes scattered from perturbation in
radiated tissue are received by the array elements.

Consider an array comprised of M transceiver elements aligned
along the x axis, as illustrated in Fig. 1. The reference element
m0 is set at the origin and the distance to the m-th element is de-
noted by δm. The image cycle begins at t = 0, when the array
transmits an energy pulse in the direction θ. The pulse propagates
trough the tissue at speed c, and at time t ≥ 0 its coordinates are
(x, z) = (ct sin θ, ct cos θ). A potential point reflector located at
this position scatters the energy, such that the echo is detected by
all array elements at a time depending on their locations. Denote by
φm(t; θ) the signal detected by the m-th element and by τ̂m(t; θ)
the time of detection. It is readily seen that:

τ̂m(t; θ) = t+
dm(t; θ)

c
, (1)

where dm(t; θ) =
√

(ct cos θ)2 + (δm − ct sin θ)2 is the distance
traveled by the reflection. Beamforming involves averaging the sig-
nals detected by multiple receivers while compensating the differ-
ences in detection time.

Using (1), the detection time at m0 is τ̂m0(t; θ) = 2t since
δm0 = 0. Applying an appropriate delay to φm(t; θ), such that the
resulting signal φ̂m(t; θ) satisfies φ̂m(2t; θ) = φm(τ̂m(t; θ)), we
can align the reflection detected by the m-th receiver with the one
detected at m0. Denoting τm(t; θ) = τ̂m(t/2; θ) and using (1), the
following aligned signal is obtained:

φ̂m(t; θ) = φm(τm(t; θ); θ), (2)

τm(t; θ) =
1

2

(
t+

√
t2 − 4(δm/c)t sin θ + 4(δm/c)2

)
.

The beamformed signal may now be derived by averaging the
aligned signals:

Φ(t; θ) =
1

M

M∑
m=1

φ̂m(t; θ). (3)

Ultrasound systems perform the beamforming process defined in
(3) in the digital domain, implying that the analog signals φm(t; θ)
detected at the receiver elements are first sampled. Rates up to 4

times the Nyquist rate, dictated by the bandwidth of the individual
signal, are required in order to improve the system’s beamforming
resolution and to avoid artifacts caused by digital implementation.
From now on we will denote this sampling rate as the beamforming
sampling rate fs.

To conclude this section we evaluate the number of samples
taken at each transducer element. Our evaluation is based on the
imaging setup used to acquire in vivo cardiac data. The acquisition
was performed with a GE breadboard ultrasonic scanner of 64 acqui-
sition channels. The radiated depth r = 16 cm and the speed of the
sound c = 1540 m/sec yield a signal of duration T = 2r/c ≃ 210
µsec. The acquired signal is characterized by a narrow bandpass
bandwidth of 2 MHz, centered at the carrier frequency f0 ≈ 3.1
MHz, leading to a beamforming rate of fs ≈ 16 MHz and Tfs =
3360 real-valued samples.

3. BEAMFORMING IN FREQUENCY

We now show that beamforming can be performed equivalently in
the frequency domain, leading to substantial reduction in the number
of samples, needed to obtain the same image quality.

We extend the notion of compressed beamforming, introduced
in [6], to beamforming in frequency and show that a linear combi-
nation of the DFT coefficients of the individual signals, sampled at
the beamforming rate fs, yields the DFT coefficients of the beam-
formed signal, sampled at the same rate. We follow the steps in [6]
and start from the computation of the Fourier series coefficients of
the beamformed signal Φ(t; θ).

The support of Φ(t; θ) is limited to [0, T ], with T defined by the
transmitted pulse penetration depth. Its Fourier series coefficients
are given by:

csk =
1

T

∫ T

0

Φ(t; θ)e−i 2π
T

ktdt. (4)

Plugging (3) into (4), it can be shown that

csk =
1

M

M∑
m=1

csk,m, (5)

where csk,m are the Fourier coefficients of φ̂m(t; θ). These coeffi-
cients can be written as

csk,m =
1

T

∫ T

0

gk,m(t; θ)φm(t; θ)dt, (6)

with

gk,m(t; θ) =qk,m(t; θ)e−i 2π
T

kt,

qk,m(t; θ) =I[|γm|,τm(T ;θ))(t)

(
1 +

γ2
m cos θ2

(t− γm sin θ)2

)
× (7)

exp

{
i
2π

T
k
γm − t sin θ

t− γm sin θ
γm

}
,

where γm = δm/c, and I[a,b] is the indicator function.
Our next step is to substitute φm(t) by its Fourier series coeffi-

cients. Denoting the n-th Fourier coefficient by φs
m[n] and using (7)

we can rewrite (6) as follows:

csk,m =
∑
n

φs
m[n]Qk,m;θ[k − n], (8)

where Qk,m;θ[n] are the Fourier coefficients of qk,m(t; θ) with re-
spect to [0, T ). According to Proposition 1 in [6], csk,m can be ap-
proximated sufficiently well when we replace the infinite summation
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in (8) by the finite one:

csk,m ≃
∑

n∈ν(k)

φs
m[n]Qk,m;θ[k − n]. (9)

The set ν(k) is defined according to the decay properties of
{Qk,m;θ[n]}. Equations (5) and (9) provide a relationship between
the Fourier series coefficients of the beamformed and the individual
signals. Denote by N = ⌊T · fs⌋ the number of samples in each
signal. Since all signals are sampled at a rate which is higher than
their Nyquist rate, the relation between the DFT of length N and the
Fourier series coefficients is given by:

ck = Ncsk, φm[n] = Nφs
m[n], (10)

where ck and φm[n] denote the DFT coefficients of the beamformed
and individual signals respectively. Plugging (10) into (5) and (8),
we get the desired relation:

ck ≃ 1

M

M∑
m=1

∑
n∈ν(k)

φm[n]Qk,m;θ[k − n]. (11)

Note that in order to calculate an arbitrary set κ of DFT coefficients
of the beamformed signal, we need ν = ∪k∈κν(k) DFT coefficients
of each one of the individual signals.

Applying an IDFT on {ck}Nk=1, we obtain the beamformed
signal. We can now proceed to standard image generation steps
which include log-compression and interpolation. To demonstrate
the equivalence of beamforming in time and frequency, we applied
both methods on in vivo cardiac data obtained as explained in Sec-
tion 2, yielding the images shown in Fig. 2. As can be seen, both
images are identical.

(a) (b)

Fig. 2. Cardiac images constructed with different beamforming
techniques. (a) Time domain beamforming. (b) Frequency domain
beamforming.

4. RATE REDUCTION BY BEAMFORMING IN
FREQUENCY

In the previous section we showed the equivalence of beamforming
in time and frequency. We next demonstrate that beamforming in
frequency allows to reduce the required number of samples of the
individual signals. To this end we consider two questions: 1) how
many DFT coefficients of the beamformed signal do we need for
its perfect reconstruction; 2) how many samples of the individual
signals should be taken in order to compute these DFT coefficients?

4.1. Parametric representation

We begin by answering the first question using a parametric model
for the beamformed signal. According to [3, 6], the beamformed

signal can be modeled as a sum of a small number of replicas of the
known transmitter pulse with unknowns amplitudes and delays:

Φ(t; θ) ≃
L∑

l=1

b̃lh(t− tl), (12)

where h(t) is the transmitted pulse-shape, L is the number of scat-
tering elements in direction θ, {b̃l}Ll=1 are the unknown amplitudes
of the reflections and {tl}Ll=1 denote the times at which the reflec-
tion from the l-th element arrived at the reference receiver m0. Sam-
pling both sides of (12) at rate fs and quantizing the unknown delays
{tl}Ll=1 with quantization step 1/fs, such that tl = ql/fs, ql ∈ Z,
we can rewrite (12) as follows:

Φ[n; θ] ≃
L∑

l=1

b̃lh[n− ql] =

N−1∑
l=0

blh[n− l], (13)

where
bl =

{
b̃l if l = ql
0 otherwise.

(14)

Calculating the DFT using (13):

ck =

N−1∑
n=0

Φ[n; θ]e−i 2π
N

kn = hk

N−1∑
l=0

ble
−i 2π

N
kl, (15)

where hk is the DFT coefficient of h[n].
The transmitted pulse h(t) may be modeled as a narrowband

waveform, g(t), modulated by a carrier at frequency f0: h(t) =
g(t) cos(2πf0t). When such a pulse is sampled at rate fs, most of
its DFT coefficients are zero, as shown in Fig. 3. Obviously, (15)
implies that the only non-zero DFT coefficients are in the bandwidth
of the transmitted pulse. This allows us to exploit the low bandwidth
of the beamformed signal and calculate only non-zero DFT coeffi-
cients. Since Φ[n; θ] is real, its DFT coefficients are symmetric, thus
we only need to know half of the overall non-zero elements. Denote
the set of non-zero DFT coefficients by κ. In typical cardiac imaging
the bandwidth of g(t) is equal to 2 MHz, the modulation frequency
f0 = 3.1 MHz, and the sampling rate fs = 16 MHz, leading to
K = |κ| ≈ 360. Once these K coefficients are known, we can re-
construct Φ[n; θ] by padding the elements of κ with an appropriate
number of zeros and performing an IDFT. Hence, we have shown
that the number of DFT coefficients of the beamformed signal re-
quired for its perfect reconstruction is the cardinality of the set κ.
This number is only 1/9 of the overall number of DFT coefficients
of beamformed signal dictated by fs.

500 1000 1500 2000 2500 3000

0.2
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0.6

0.8

1

Fig. 3. The DFT coefficients of the transmitted pulse. The band-
width of the waveform is 2 MHz, f0 = 3.1 MHz, fs = 16 Mhz.

4.2. Reduced rate sampling

We now address the second question: how many samples of the indi-
vidual signals should be taken in order to compute the set of non-zero
DFT coefficients κ?

As shown in Section 3, we need to know a set ν of the DFT co-
efficients of each individual signal in order to compute a set κ of the
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DFT coefficients of the beamformed signal. The experimental re-
sults show that in ultrasound imaging scenario, |κ| ≤ |ν| ≤ 1.33|κ|.
According to (10), we equivalently seek the same set ν of Fourier
series coefficients of each individual signal. The above problem is
addressed in [6]. A mechanism, proposed there, allows to obtain a
set κ of Fourier coefficients of the beamformed signal from |ν| sam-
ples of each of the individual signals, filtered with an appropriate
kernel. Namely, the number of the samples taken from the individual
signal is |ν|. For the setup mentioned in Subsection 4.1, |κ| ≈ 360,
implying that in the worst case we need only |ν| = 1.33|κ| ≈ 480
samples of the individual signal, while for beamforming in time do-
main we need ≈ 3360 samples as shown in Section 2. This allows us
to achieve 7-fold reduction in sampling rate without compromising
image quality. The images, created by these two techniques, shown
in Fig. 4, are identical.

(a) (b)

Fig. 4. Cardiac images constructed with different beamforming tech-
niques. (a) Time domain beamforming, 3360 samples per individual
signal. (b) Frequency domain beamforming using 480 samples per
individual signal (7 fold reduction in sampling rate).

5. FURTHER REDUCTION VIA CS

We showed that it is possible to reconstruct a beamformed signal
perfectly from the set κ of its non-zero DFT coefficients, computed
from a small number of samples of the individual signals. We show
next that further reduction in sampling rate is possible, when taking
only a subset µ ⊂ κ, |µ| = M < K = |κ|, of DFT coefficients of
the beamformed signal.

Defining a K-length vector c with k-th entry ck/hk, k ∈ κ, we
can rewrite (15) in matrix form:

c = Db (16)

where D is a K×N matrix formed by taking the set κ of rows from
an N × N DFT matrix, and vector b is of length N with l-th entry
bl. Since from now on only subset µ is given, define an M -length
vector cµ with k-th entry ck/hk, k ∈ µ and rewrite (16) as follows:

cµ = ADb (17)

where A is M×K measurement matrix which picks the subset µ of
rows from D, implying that AD is M ×K matrix formed by taking
the set µ of rows from an N ×N DFT matrix.This property of AD
will be used below.

5.1. Synthesis approach

Since from (13) the signal of interest is completely defined by the
unknown delays and amplitudes, a possible approach is to extract
those values from the available set µ of DFT coefficients. Equa-
tion (17) can be viewed from a CS perspective, when we assume
that the number of scatterers L is small, since according to (14) it
implies that the vector b is sparse. Hence (17) has the form of a

classic sparse synthesis model [9], where vector cµ has a sparse rep-
resentation in AD. The goal is to reconstruct an L-sparse vector
b from its projection onto a subset of M orthogonal vectors given
by the rows of matrix AD. With an appropriate choice of L and
subset of fourier coefficients µ, such a problem can be solved using
CS methodology, including l1 optimization and greedy algorithms.
Indeed, in [6], orthogonal matching pursuit (OMP) [10] shows suffi-
ciently good performance.

The synthesis approach has a significant drawback. The assump-
tion of a small number of reflecting elements L, forces us to treat
only the strong reflectors located in direction θ. In such a setup
we essentially loose all the weak reflectors that appear as speckle,
namely, granular pattern that can be seen in Fig. 2, and carry impor-
tant information in medical imaging.

5.2. Analysis approach

To avoid loss of speckle information, imposed by the assumption of
sparsity, we propose using an analysis approach [7]. In this method-
ology we aim to reconstruct the set κ from its subset µ, while as-
suming that the analyzed vector D∗c is compressible. The analysis
approach can be translated into the l1 optimization problem:

min
c

∥D∗c∥1 subject to ∥Ac− cµ∥2 ≤ ε. (18)

According to Theorem 1.4 in [7], the solution to (18) is very ac-
curate, if the measurement matrix A satisfies the restricted isome-
try property adapted to D (D-RIP) and the elements of D∗c decay
rapidly. As we mentioned before, AD is a partial DFT matrix, there-
fore, according to results in [7], A satisfies the D-RIP.

A typical beamformed ultrasound signal is comprised of a rel-
atively small number of strong reflections and a bunch of much
weaker scattered echoes. It is, therefore, natural to assume that b is
compressible, implying that c has a compressible expansion in D.
Since D is a partial DFT matrix, its Gram matrix is nearly diagonal,
implying that D∗c is also compressible [7] and satisfies the decay
requirement.

To demonstrate the proposed method, a subset µ of 100 Fourier
coefficients corresponding to the central frequency samples in the
bandwidth of the transmitted pulse were chosen. To calculate µ we
need at most 133 samples per individual signal, implying 25 fold
reduction in sampling rate. The result is shown in Fig. 5 (a). To
compare the proposed solution with the previously developed OMP
based method [6], the same subset µ was used to reconstruct the
beamformed signal assuming L = 25 strong reflectors in each di-
rection θ. The resulting image is shown in Fig. 5 (b).

(a)

 

(b)

Fig. 5. Cardiac images constructed from partial spectrum data with
25 fold reduction in sampling rate. (a) Modified l1 optimization so-
lution. (b) OMP based reconstruction.
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