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ABSTRACT

Statistical image reconstruction methods provide improved

image quality in low-dose X-ray CT. However, the long com-

putation time of iterative algorithms limits their clinical use.

Ordered subsets algorithms based on separable quadratic

surrogates (OS-SQS) are attractive as they are simple and

amenable for massive parallelization in modern computing

architecture, but require many iterations to converge. Here,

we further accelerate OS algorithms by using momentum

techniques. We use real patient CT scan to illustrate that the

proposed algorithms converge rapidly compared to previous

OS algorithms.

1. INTRODUCTION

In X-ray CT reconstruction, we reconstruct an image x̂ ∈RNp from noisy measured data y ∈ RNd by minimizing a

convex (and differentiable) cost function Ψ(x), possibly with

a non-negativity constraint:

x̂ = argmin
x�0

Ψ(x). (1)

One standard choice of Ψ(x) for X-ray CT reconstruction is

a penalized weighted least squares (PWLS) cost function [1]:

Ψ(x) =
1

2
||y −Ax||2

W
+ βR(x), (2)

where A is a projection operator, a diagonal matrix W pro-

vides statistical weighting, R(x) is a (often non-quadratic and

usually differentiable) regularization function, and β is a reg-

ularization parameter that balances the data-fitting term and

the regularizer R(x). Minimizing Ψ(x) requires iterative al-

gorithms that need substantial computation time (especially

in 3D CT), and the goal of this work is to describe faster iter-

ative algorithms.

There are many general iterative algorithms, but only

some of them are well suited to X-ray CT reconstruction,
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because of the large-scale of the problem. Particularly, the

projection operators A and A′ in X-ray CT require signif-

icant computation time and thus computing the gradient

∇Ψ(x) = A′W (Ax− y) + β∇R(x) of the cost function re-

peatedly in an iterative algorithm becomes expensive. (Com-

putation of ∇R(x) is less intense than computing products

of the form Ax in CT.) Ordered subsets (OS) algorithms are

widely used in X-ray CT research (and are already used in

clinical PET and SPECT), because they approximate ∇Ψ(x)
using only a subset of measured data [2, 3]. Even though OS

methods involve approximations and only nearly approach

x̂, they can provide dramatic initial acceleration and are thus

useful for large-scale problems such as 3D CT.

OS algorithms are naturally suited to optimization trans-

fer methods. One well-known variation is an OS algorithm

based on separable quadratic surrogates (OS-SQS) that is sim-

ple and amenable for massive parallelization in modern par-

allel computing architectures [3]. However, the algorithm re-

quires many iterations to converge. Recently, we developed

a non-uniform (NU) optimization transfer that reduced the

number of iterations to converge [4]. Here, we further accel-

erate OS methods by using momentum techniques that pro-

vide additional acceleration toward the optimum. For non-OS

methods, the fast iterative shrinkage-thresholding algorithm

(FISTA) [5] is a representative method for using momentum;

FISTA provides O(1/n2) convergence in Ψ(x) as opposed to

O(1/n) rate for conventional optimization transfer methods,

where n counts the number of iterations.

In this work, we propose to combine momentum tech-

nique from [5] with OS methods for image reconstruction,

particularly for optimization transfer methods such as SQS

and NU-SQS. We apply the algorithms to X-ray CT recon-

struction. We first explain the optimization transfer and OS

methods in general and introduce the momentum technique

to optimization transfer and to OS methods. Then we inves-

tigate the acceleration of OS techniques when combined with

momentum on a real patient CT scan. The results show that

the proposed algorithms highly accelerate the iterative recon-

struction for 3D X-ray CT.
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2. OPTIMIZATION TRANSFER METHOD

When an objective function Ψ(x) is difficult to minimize, we

replace it by a surrogate φ(n)(x) at nth iteration that is easier

to minimize [3]. The basic iteration of optimization transfer

is

x(n+1) = argmin
x�0

φ(n)(x). (3)

To monotonically decrease Ψ(x), we design surrogates

φ(n)(x) that satisfy the following conditions:

Ψ(x(n)) = φ(n)(x(n)),

Ψ(x) ≤ φ(n)(x), ∀x ∈ RNp , x � 0. (4)

We usually majorize the cost function Ψ(x) by the following

quadratic surrogate function φ(n)(x):

Ψ(x) ≤ φ(n)(x) , Ψ(x(n)) +∇Ψ(x(n))′(x− x(n))

+
1

2
(x− x(n))′D(x − x(n)), (5)

which satisfies the condition (4). The majorizing matrix D
can simply be an identity matrix scaled by the Lipschitz con-

stant of Ψ(x) [5] or a diagonal matrix derived by (NU-)SQS

algorithm [3, 4], or can be generated by other methods that

yield a matrix that is easier to invert than the Hessian of Ψ(x).
The smallest possible Lipschitz constant of the cost function

Ψ(x) in (2) is not easily computable, and thus it is usually

preferable to use (NU-)SQS algorithms in X-ray CT.

Then the iteration (3) turns out to be

x(n+1) =
[

x(n) −D−1∇Ψ(x(n))
]

+
, (6)

where a clipping [·]+ enforces the non-negativity constraint.

The optimization transfer method with a diagonal majorizer

D has convergence rate O(1/n):

Theorem 1 For a diagonal majorizer D, the sequence
{

x(n)
}

generated by (6) satisfies

Ψ(x(n))−Ψ(x̂) ≤
||x(0) − x̂||2

D

2n
. (7)

This result is a simple generalization of Theorem 3.1 in [5].

Our NU approach [4] accelerated the optimization trans-

fer method by reducing the numerator ||x(0) − x̂||2
D

with

respect to D in Theorem 1, subject to the condition (5). This

helped the algorithm to converge faster but the convergence

rate remained O(1/n). Applying momentum techniques to

optimization transfer method can provide acceleration and

achieve a faster convergence rate O(1/n2), as detailed in the

next section.

3. OPTIMIZATION TRANSFER WITH MOMENTUM

One can accelerate optimization transfer algorithms by intro-

ducing a momentum term that uses an image estimate from

Initialize x(0) = v(0), t0 = 1

for n = 0, 1, 2, · · ·

tn+1 =
(

1 +
√

1 + 4t2n

)

/2

x(n+1) =
[

v(n) −D−1∇Ψ(v(n))
]

+

v(n+1) = x(n+1) +
tn − 1

tn+1
(x(n+1) − x(n))

Fig. 1. Optimization transfer method with momentum

the previous iteration [5]. Fig. 1 shows optimization transfer

method with momentum. In Fig. 1, x(n) is a normal optimiza-

tion transfer update and v(n) is the momentum update term

that depends on previous iteration, which helps the algorithm

converge faster. The momentum update v(n) is computation-

ally negligible compared with the x(n) update, so introducing

momentum to optimization transfer is very practical. The al-

gorithm in Fig. 1 reduces to the standard optimization transfer

method in (6) when tn = 1 for all n ≥ 0.

This algorithm has a convergence proof by Theorem 2 for

the sequence
{

x(n)
}

with convergence rate O(1/n2):

Theorem 2 For a diagonal majorizer D, the sequence
{

x(n)
}

generated by Fig. 1 satisfies

Ψ(x(n))−Ψ(x̂) ≤
2||x(0) − x̂||2

D

(n+ 1)2
. (8)

Theorem 2 is a simple generation of Theorem 4.4 in [5],

which was shown for a surrogate with a scaled identity Hes-

sian (using Lipschitz constant).

We further accelerate the algorithm in Fig. 1 by applying

ordered subsets (OS) methods in the next section.

4. PROPOSED ALGORITHM COMBINING

ORDERED SUBSETS AND MOMENTUM

4.1. Ordered subsets (OS) algorithm

We first review the standard ordered subsets (OS) approach

for accelerating iterative image reconstruction. The cost func-

tion Ψ(x) =
∑

M−1
m=0 Ψm(x) is a sum of

Ψm(x) =
1

2
||ym −Amx||2Wm

+
β

M
R(x), (9)

which is a function of mth subset of measurement data, where

M is a number of subsets. Am, ym and Wm are sub-matrices

of A, y and W that correspond to the mth subset of measured

data. In an ordered subsets method, we use the approximation

∇Ψ(x) ≈ M∇Ψ0(x) ≈ M∇Ψ1(x) ≈ · · · ≈ M∇ΨM−1(x),
(10)

when each subset consists of measurement data (e.g., projec-

tion views) approximately uniformly down-sampled by M .
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With the assumption (10), we replace ∇Ψ(x) by M∇Ψm(x)
(or with similar approximations [6]) in optimization transfer

method in (6). So, with only 1/M of the amount of computa-

tion by using a subset of measured data, we can approximate

the original gradient of the cost function and have about M
times acceleration in early iterations. However, the approxi-

mation (10) becomes very inaccurate as the iterates approach

the minimizer, and the OS algorithm loses the convergence

property.

Optimization transfer with ordered subsets generates a se-

quence
{

x(n+ m
M

)
}

:

x(n+m+1

M
) =

[

x(n+ m
M

) −D−1M∇Ψm(x(n+ m
M

))
]

+
, (11)

where each mth sub-iteration is counted as 1/M iteration

of (6), as (11) uses only 1/M amount of computation for the

forward and back projection required in (6). But, OS meth-

ods with large M can be slow in run time due to the increased

computation for ∇R(x).

4.2. Proposed OS algorithms with momentum

To provide more acceleration, we propose to combine OS

algorithms with the momentum technique described in Fig. 1.

The outline of proposed OS algorithms with momentum is

presented in Fig. 2. The sequence
{

x(n+ m
M

)
}

generated

by Fig. 2 is expected to have a M2-times accelerated conver-

gence rate O(1/(nM +m)2) with the assumption (10).

Like standard OS methods, OS algorithms with momen-

tum are not guaranteed to converge to the optimum x̂. The

approximation (10) will fail as the iterates reach near the op-

timum, but the OS aspects of the proposed algorithm will still

speed up the convergence initially.

Initialize x(0) = v(0), t0 = 1

for n = 0, 1, 2, · · ·

for m = 0, 1, · · · ,M − 1

tnM+m+1 =
(

1 +
√

1 + 4t2
nM+m

)

/2

x(n+m+1

M
) =

[

v(n+
m
M

) −D−1M∇Ψm(v(n+
m
M

))
]

+

v(n+
m+1

M
) = x(n+m+1

M
) +

tnM+m − 1

tnM+m+1

(x(n+m+1

M
) − x(n+ m

M
))

Fig. 2. Optimization transfer method with ordered subsets

and momentum

Furthermore, owing to the acceleration provided by the

momentum term, it is possible to use fewer subsets (smaller

M ) than with standard OS methods, so the approximation

in (10) becomes more accurate and the limiting behavior of

the proposed (OS-momentum) algorithm can be better stabi-

lized compared to conventional OS methods. Fewer subsets

also reduces overhead in computing the regularizer. Further

theoretical investigation of the behavior of OS with momen-

tum is future work.

5. RESULTS

We examined the convergence rate of the proposed (OS-

momentum) algorithms compared with the ordinary OS-SQS

algorithm on a 3D helical X-ray CT data set of a human shoul-

der. Fig. 3 shows the RMSD1 (root mean square difference)

between the current and converged image in Hounsfield Units

1RMSD = ||x(n) − x̂||2/
√

Np [HU].
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Fig. 3. Plots of RMSD versus iterations for the standard (NU-)OS algorithms and the proposed (NU-)OS algorithms with

momentum: (a) 1 subset and (b) 24 subsets version. (There are no changes in RMSD during first iteration, since we use one

forward and back projections for precomputation of the denominator D before iterating.)
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Fig. 4. Center slice of FBP image x(0), converged image x̂, and reconstructed images of OS(24 subsets)-(NU-)SQS algorithms

(with momentum) at 10th iteration.

(HU) for CT, versus iteration. The results show that inclu-

sion of momentum highly accelerated the standard OS-SQS

algorithm, and its combination with NU approach provided

the fastest convergence among all considered algorithms.

Fig. 3(b) reaffirms that using OS highly accelerates the stan-

dard optimization transfer methods that have slow conver-

gence as shown in Fig. 3(a).

OS methods with 24 subsets required about 20% in-

creased computation time per iteration compared to the stan-

dard SQS, and the NU approach needed additional 13% run

time in our implementation. (This will vary depending on the

implementation and computing environments.) In contrast,

incorporating the momentum term requires negligible addi-

tional computation time, providing significant acceleration in

terms of both number of iterations and computation time.

Fig. 4 presents the filtered back projection (FBP) that was

used as initialization for all iterative algorithms in this work

and converged image x̂ as a reference. The reconstructed im-

ages of the standard (NU-)OS algorithms and the proposed

(NU-)OS algorithms with momentum are from the 10th iter-

ation. The results confirm that the momentum term greatly

improves the speed of OS algorithms, and the combination of

OS, NU and momentum gives the best image among others,

very close to the converged image.

6. CONCLUSION

We have proposed to combine OS algorithms and momen-

tum technique on top of optimization transfer methods. The

proposed algorithms converge much faster than conventional

OS algorithms, and are of practical interest. The next step is

to examine the performance of proposed algorithms on addi-

tional real patient CT scans and to study theoretical conver-

gence properties.
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