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Saima Ben Hadj 1∗ , Laure Blanc-Féraud 1, Gilles Aubert 2 and Gilbert Engler 3

1 Morphème Research Group, I3S/INRIA/IBV, 06903 Sophia Antipolis, France
2 Laboratoire J.A Dieudonne, UMR 6621 CNRS/UNSA, 06108 Nice, France

3 IBSV Unit, INRA, 06903 Sophia Antipolis, France.

ABSTRACT

We are interested in blind image restoration in confocal laser
scanning microscopy (CLSM). Two challenging problems in
this imaging system are considered: First, spherical aberra-
tions due to refractive index mismatch leads to a depth variant
(DV) blur. Second, low illumination leads to a signal depen-
dent Poisson noise. In addition, the DV point spread func-
tion (PSF) is unknown, which increases the complexity of the
problem considered. Our goal is to remove in a blind frame-
work both the DV blur and the Poisson noise from CLSM im-
ages. Using an approximation of the DV PSF, we define in a
Bayesian framework a criterion to be jointly minimized w.r.t.
the specimen function and the PSF. We then adopt an alter-
nate minimization scheme for the optimization problem. For
each elementary minimization, we use the recently proposed
scaled gradient projection (SGP) algorithm that has shown a
fast convergence rate. Results are shown on simulated and
real CLSM images.

Index Terms— Blind restoration, confocal microscopy,
depth-variant PSF, JMAP, SGP algorithm.

1. INTRODUCTION

Confocal laser scanning microscopy (CLSM) is a powerful
technique for studying biological specimens in three dimen-
sions (3D) by optical sectioning. Nevertheless, it suffers from
some artifacts. First, CLSM images are affected by a depth-
variant (DV) blur due to spherical aberrations induced by re-
fractive index mismatch between the different media compos-
ing the system as well as the specimen. Second, CLSM im-
ages are corrupted with a Poisson noise due to low illumina-
tion. Because of these intrinsic optical limitations, it is essen-
tial to remove both DV blur and noise from these images by
digital processing. In this context, different restoration meth-
ods assuming that the blur is known have been developed
[1, 2]. Nevertheless, in practice it is difficult to obtain such
a DV Point Spread Function (PSF) in spite of the existence of
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theoretical PSF models accounting for spherical aberrations
[3, 4], because these models are dependent on some unknown
acquisition parameters (e.g. the refractive index (RI) of the
specimen). Therefore a blind or semi-blind restoration algo-
rithm needs to be developed for this system.

Different methods dealing with the blind restoration prob-
lem in the case of a space-variant (SV) blur were previously
developed. Most of them are carried out under the Gaussian
noise assumption. For example, in [5, 6] and in [7], two dif-
ferent approximation models of the SV blur are proposed and
then used in the blind estimation by minimizing a quadratic
criterion arising from the maximum likelihood. These two
models are discussed and compared in [8, 9]. In [10], a more
accurate SV PSF model is used where the PSF intensities are
estimated at every pixel of the image. Although accurate, this
method is prohibitive because of its huge computational cost.
Some other methods dealing with the DV blind restoration
problem were proposed in the literature. They essentially dif-
fer in the way of regularizing the SV PSF and the image in
order to reduce the ill-posedness of the problem. We refer the
reader to a few of these methods [11, 12, 13]. Nevertheless,
none of these methods consider the Poisson noise case.

In this article, we propose a new DV blind restoration
accounting for the Poisson noise in CLSM. Our first novel
contribution w.r.t. the previous work consists in designing an
appropriate constrained criterion to be minimized for the ill-
posed blind restoration problem while accounting for both of
the DV blur and the Poisson noise. In our proposed criterion,
we combine l1 and l2 norms for respectively regularizing the
image and the PSF. Furthermore, we consider an approxima-
tion of the DV PSF by a convex combination of a set of SI
ones, as it is suggested in [8, 9]. In contrast to some existing
methods [12], we do not consider any parametrization of the
PSF. The non-parametric intensities of each PSF h(x, y, z)
are estimated for all (x, y, z). This leads to a high number
of parameters to be estimated but allows more freedom on
the PSF, namely on the PSF shape since it could be more or
less deformed according to the spherical aberration level. Our
second contribution consists in designing a fast algorithm for
minimizing the proposed multivariate criterion. We propose
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to use the recently published scaled gradient projection (SGP)
method [14] embedded in an alternate minimization scheme.
In fact, SGP method has shown a fast convergence rate w.r.t.
classical gradient search methods. We denote this method by
SGPAM for SGP Alternate Minimization. Furthermore, posi-
tivity constraint of the PSF and the image, PSF normalization
and flux conservation are easily included thanks to the defi-
nition of SGP algorithm. This article is organized as follows:
In section 2 , we give a mathematical formulation of the con-
sidered problem and define the criterion to be minimized. In
section 3, we present the proposed SGPAM solver. In section
4, we present and discuss some experimental tests obtained on
simulated and real CLSM images. In section 5, we conclude
with a summary and some future works.

2. PROBLEM DEFINITION

Denote by f ∈ L1 (I,R+) the original 3D images, with
I ⊂ R3 its support. Each voxel j of the recorded dis-
crete 3D image g represents the number of photons reaching
the sensor in an elementary volume Vj ⊂ I. The pro-
cess of photon counting follows a Poisson statistic: g(j) ∼
P
(´

Vj
H̃ (f) (u)du+ bg

)
where u ∈ I are the continuous

3D coordinates, j ∈ Id ⊂ N3 are the discrete 3D coordinates,
and bg > 0 is a constant modeling the background noise,
coming from specimen auto-fluorescence or light scattering.
This constant is considered to be known since it can be esti-
mated from a region of the observed image which does not
contain the specimen. H̃ is the DV blur operator modeled
by a convex combination of M SI PSFs taken at different
depths hi,, i = 1, ..., M as: H̃ (f) =

∑
1≤i≤M

hi ∗
(
ψi.f

)
with ψi : R3 → [0, 1], 1 ≤ i ≤ M a set of weighting
functions such that

∑
1≤i≤M

ψi (u) = 1, ∀u ∈ R3. Such a DV

PSF model has been proposed in [1] and justified in [9, 8].
As we consider PSF variation only in the depth direction (z),
ψi (x, y, z) are constant along (X, Y ) and linearly varying
along Z-axis as given by Fig. 1. That is, each ψi linearly
decreases when going away from the axial position of the cor-
responding SI PSF. Such a choice of weighting functions was
shown to give comparable restoration result to that obtained
by a more advanced functions predicted by principle compo-
nent analysis [15]. Following a Joint Maximum A posteriori
(JMAP) approach, we propose to estimate the image and the
PSFs by minimizing the following criterion:

J
(
f, h1, ..., hM

)
=
∑
j∈Id

ˆ
Vj

H̃ (f) (u)du+ bg

− g(j)log

(ˆ
Vj

H̃ (f) (u)du+ bg

)

+ α

ˆ
I
|Df | +

∑
1≤i≤M

βi
∥∥∇hi∥∥2

2

(1)

The two first terms correspond to the data fidelity component
related to anti-logarithm of the likelihood in the case of the
Poisson statistic. The third term is the total variation function
for smoothing the recovered image while preserving sharp
edges. The last term is a PSF regularization term for penal-
izing narrow PSF. In fact, if the PSF is too narrow, a portion
of the blur could be associated with the recovered image. α
and βi, 1 ≤ i ≤ M are regularizing parameters. In addi-
tion, we take into account other constraints: On the one hand,
positivity, normalization, and bounded support constraints are
imposed on the PSFs. On the other hand, positivity and flux
conservation constraints are imposed on the image. For that,
let denote respectively by

Cf
c = {f ∈ L1

(
I,R+

)
; f ≥ 0; ‖f‖1 = c}, (2)

Ch = {h ∈ L1
(
I,R+

)
;h ≥ 0; ‖h‖1 = 1; supp (h) ⊂ B}

(3)

the sets of admissible image and PSF functions, where c =
‖g − bg‖1 is a positive constant referring to the image flux,
supp (h) stands for the support of the PSF h and B is a given
index set corresponding to a predefined PSF support. The
problem that we are interested in is the following:(

f̂ , ĥ1, ..., ĥM
)
= argmin

Cf×CM
h

J
(
f, h1, ..., hM

)
(4)

It is easy to verify that the functional J (.) is convex w.r.t.
each of the variables

(
f, h1, ..., hM

)
separately (fixing the

others) but globally non-convex. However, we have shown
that a global minimiser of (1) exists (see [16]). As we use a
deterministic method based on a gradient search technique for
the minimization, the computation of a global minimum is not
guaranteed and the obtained solution depend on the initializa-
tion. Theoretical PSF model [4] gives us a good initialization
by approximately setting its parameters (i.e. the refractive in-
dex of the specimen is between 1 and 1.6 and the PSF depths
are limited by the sample thickness).

Fig. 1. Variations of 10 weighting functions ψi along the Z
axis. They are assumed to be invariant along (X, Y ).

3. PROPOSED SOLVER: SGPAM

3.1. Alternate minimization scheme

In order to solve problem (4), we propose to use an iterative
alternate minimization scheme. The minimization problem is
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split into many steps. At each step, one variable is optimized
and the others are fixed to their previous estimates:

f̂ (k+1) = argmin
f∈Cf

J

(
f, ĥ1

(k)
, ..., ĥM

(k)
)

(5)

ĥ1
(k+1)

= argmin
h1∈Ch

J

(
f̂ (k+1), h1, ..., ĥM

(k)
)

(6)1

...

ĥM
(k+1)

= argmin
hM∈Ch

J

(
f̂ (k+1), ĥ1

(k+1)
, ..., hM

)
(6)M

k being the iteration counter. To solve each of the above prob-
lems, we use a fast SGP algorithm [17] since the criterion is
convex w.r.t. each of the variables separately. Such an al-
gorithm was firstly applied to image deblurring [17] without
regularization, then to image denoising [14] with total varia-
tion regularization. In both cases, the objective function to be
minimized is different from that we consider in this article.
We show in the following sub-section the main idea of SGP
algorithm and how it can be applied to our problem.

3.2. SGP for image and PSF estimations

SGP [17] is proposed to solve convex constrained optimiza-
tion problems of the following form: min J(x)

x∈C
where

x = (x1, ..., xN )T ∈ RN is an N -dimensional vector,
C ⊂ RN is a closed convex set describing the constraints
on x, and J : C → R is a differentiable convex function.
SGP finds a solution of that problem by approximating the
following fixed point: x∗ = PC (x∗ − δS∇J(x∗)) where
δ is a positive scalar referring to the step-length of the de-
scent method, S is a symmetric positive definite N × N
matrix which is called scaling matrix, and PC is the pro-
jection onto C. (δS) allows to approximate the inverse of
the Hessian matrix of J in order to enforce quasi-Newton
properties and thus provides good convergence rate. By fol-
lowing the same strategy as in [14] for selecting δ and S, the
SGP algorithm can be applied for solving each of problems
(5), (6)i, i = 1, ..., M . For that, we consider the follow-
ing discrete notations: f , g,hi ∈ RN are N -dimensional
vectors respectively corresponding to the original image,
the degraded image, and the PSFs, with N the image size.
The circular convolution can be computed by the two fol-
lowing possible matrix-vector multiplications: Hf with
H an N × N matrix constructed from the SI PSF vector
h or Fh with F an N × N matrix constructed from the
image vector f . For the image estimation step (problem
(5)), the function to be minimized is (|Vj | = 1, ∀j ∈ Id

in equation (1)): J0 (f) = 1T

( ∑
1≤i≤M

Hiψif + bg

)
−

gT log

( ∑
1≤i≤M

Hiψif + bg

)
+ α ‖∇f‖1, where 1 ∈ RN

is an N -size vector whose components are all equal to 1,
bg ∈ RN is a constant vector, Hi ∈ RN×N are matrices
associated with the SI PSF hi, and ψi ∈ RN×N are diag-
onal matrices referring to weighting coefficients. Following
the same steps as in [14], we derive the following expres-
sion of the matrix S(n) at the iteration n of SGP: S(k) =
diag

(
Z(n)−1f (n)

)
with Z(n) = diag

(
1+ αV R

0

(
f (n)

))
,

V R
0

(
f (n)

)
being the positive part of the gradient of the reg-

ularization component. It can be chosen as equation (25) in
[14]. Similarly, to estimate the PSFs hj , j = 1, ..., M , the
following objective function is to be minimized: Jj

(
hj
)
=

1T

( ∑
1≤i≤M

F ihi + bg

)
− gT log

( ∑
1≤i≤M

F ihi + bg

)
+

βj
∥∥∇hj

∥∥2
2

with F i the matrix associated with the vector
ψif . We can prove that an appropriate selection of the scal-
ing matrix is as follows: S(n) = diag

(
E(n)−1hj(n)

)
with

E(n) = diag
(
F j1+ βjV R

j

(
hj(n)

))
, n being the SGP

iteration number and V R
j

(
hj(n)

)
the positive part of the

gradient of the regularization component. Note that upper
and lower bounds of these scaling matrices should be ad-
justed according equation (26) of [14]. Moreover, using these
expressions, one can update the step-length δ from Barzilai
and Borwein rules given by equations (29) and (30) in [17].
Thanks to this choice of δ and S, one uses the largest pos-
sible descent step-length that decreases the energy function.

Hence, the sequence
(
J

(
f̂ (k), ĥ1

(k)
, ..., ĥM

(k)
))

k∈N
is

decreasing and bounded below, so it is convergent.

4. EXPERIMENTAL TESTS

We present here some numerical results on simulated and real
CLSM data. To assess the accuracy of our restoration result
w.r.t. the reference image, we use the relative reconstruc-
tion error (RRE) and the structural similarity index (SSIM)
[18]. We also compare our SGPAM based method to an other
AM based method where elementary optimization problems
are solved using a Regularized Richardson-Lucy algorithm
[19]. We denote this latter method by RRLAM. Regulariz-
ing parameters α and βi depend on the PSF initialization: for
spread PSFs, βi can be set to a very low value (the regular-
izing PSF term is useless), while for narrow PSFs, βi should
be set to a high value. In our tests, these parameters are auto-
matically selected for a fixed PSF initialization by optimizing
a no-reference quality metric that takes into account both of
non-homogeneous blur and noise [20].

4.1. Test on synthetic CLSM data

We numerically generate a 3D image of 100×100×100 vox-
els, of three spheres. The axial slice of that image is depicted
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in Fig. 2 (a). We then blurred that image using a DV PSF:
For each Z-section we used a different PSF generated by the
theoretical PSF [4]. For that, we considered the following
system setting. The microscope is assumed to be equipped
with a 100X oil immersion objective lens (RI 1.5) and a nu-
merical aperture of 1.4. The cover-slip and the imaged object
have respectively a RI of 1.5 and 1.48. Dye excitation was as-
sumed to be done with the 543nm laserline of a HeNe laser
and emitted light assumed to be detected using a bandpass fil-
ter 560−600nm. Radial and axial pixel sizes are respectively
50nm and 145nm. After blurring the considered image, we
added to it a background noise of bg = 10−4 and a Poisson
noise. The axial slice of the obtained image is presented in
Fig. 2 (b). We applied to that image our SGPAM algorithm
using a combination of two SI PSFs, taken at the top (z = 0)
and at the bottom (z = zmax) of the sample. Comparison
of our result (cf. Fig. 2 (c)) with that obtained by RRLAM
method (cf. 2 (d)) show the relevance of our method. We also
compare one of the estimated PSFs ĥ2 using SGPAM (cf. Fig.
2 (g)) and RRLAM (cf. Fig. 2 (h)) to the true PSF and the ini-

tial PSF ĥ2
(0)

respectively displayed in Fig. 2 (e) and (f). Ta-
ble 1 shows that SGPAM method is faster and more accurate
than RRLAM. From that table, one can also note the advan-
tage of the proposed DV blur model w.r.t. the SI case. The
computing time in the SI case is sometimes slightly greater
than in DV case because the algorithm requires less number
of iterations to converge in the DV case than in the SI case.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (Y, Z) slices of the obtained results on a simulated
CLSM image. (a) original image, (b) simulated observation,
(c) restoration using SGPAM, (d) restoration using RRLAM,

(e) true PSF hi, (f) initial PSF ĥi
(0)

, (g) estimated ĥi using
SGPAM, and (h) estimated ĥi using RRLAM for i = 2 (α =
10−3, βi = 0.1, i = 1, 2).

4.2. Test on real CLSM image

Our second test is performed on a real image of a plant root
of size 200 × 200 × 94 voxels, observed with a Zeiss LSM
510 microscope equipped with a 40X oil immersion objective
lens with a numerical aperture of 1.3. The radial and axial

pixel-sizes are respectively 40nm and 140nm. Radial and
axial slices of the observed image, the restored one using a
DV PSF constructed from a combination of two SI PSFs and
the restored one using a SI PSF are respectively displayed in
Fig. 3 (a), (b), and (c). DV blind restoration shows good
results in this real image case.

(a) (b) (c)

Fig. 3. (X, Y ) sections (two first lines) and (X, Z) sections
(third line) of a real CLSM image of a plant root. (a) the
observation, (b) the restoration using SGPAM and a SI PSF,
and (c) the restoration using SGPAM and a DV PSF (α =
0.04, β1 = 0.01, β2 = 104).

RRLAM SGPAM
SI DV SI DV

RRE (%) 20.17 16.59 16.03 7.81
SSIM 0.85 0.88 0.90 0.95
time (min) 6.90 9.10 6.7 6.18

Table 1. SGPAM method vs. RRLAM method.

5. CONCLUSION

In this article, we present a blind restoration method account-
ing for the DV blur and the Poisson noise in CLSM. The DV
PSF is approximated by a convex combination of a set of SI
PSFs. We defined a convenient criterion to simultaneously
estimate the SI PSF set and the sharp image. Positivity of
the unknown variables, PSF normalization, and flux conser-
vation are ensured by the proposed SGPAM solver. Tests
on simulated and real CLSM data showed the advantage of
our method w.r.t. RRLAM method in terms of computational
time and restoration quality. More generally, the method can
be applied on any acquisition system where the PSF is space-
variant and the noise follows a Poisson statistic. An interest-
ing future work is to study the choice of the weighting func-
tions in a blind framework. A previous study in the non-blind
case can be found in [15].
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