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ABSTRACT

In this paper, we propose an adaptive time-frequency reso-
lution based single channel sound source separation method
using Non-negative Tensor Factorization (NTF). The model
aims to alleviate drawbacks of working by fixed length Short
Time Fourier Transform (STFT) by minimizing the smearing
of signal energy in both time and frequency. A joint opti-
mization scheme has been applied based on KL-divergence
where each layer of the tensor represents the mixture at a dif-
ferent resolution. In order to enclose sparseness into factor-
ization, the resynthesis is made through an adaptive weighted
fusion procedure which combines the separated sources in a
manner that maximizes the energy concentration. Test results
reported over a large sound database indicate the introduced
NTF based fusion method improves the sound quality both in
terms of conventional and perceptual distortion measures.

Index Terms— Non-negative Tensor Factorization, sound
source separation, adaptive time-frequency resolution

1. INTRODUCTION

Existing audio source separation methods mostly use a time-
frequency representation of the signal such as spectrogram
derived by the Short-Time Fourier Transform (STFT). The
main problem with the fixed time-frequency resolution STFT
is the smearing of signal energy in either direction. Smearing
in time causes artifacts such as pre- or post-echoes around
transients which lead to incorrect detection of temporal
changes [1]. On the other hand, smearing of signal energy in
frequency prevents distinguishing closely spaced harmonics.

This paper introduces a method that aims to alleviate
problems encountered in single channel sound source separa-
tion techniques. We propose an adaptive short-time analysis-
synthesis scheme in order to arrive at a signal-dependent su-
pervised source separation method which reduces the artifacts
caused by using a single resolution based representation. In
our approach, the multiresolution time-frequency representa-
tion of the observed signal is represented as an “n-way array”
or in other terms as a “tensor”, where each layer of the tensor
denotes the magnitude spectrogram of the observed mixture
obtained using a different time-frequency resolution. Since

the input is represented as a multidimensional matrix, Non-
negative Tensor Factorization (NTF) [2] which is a natural
generalization of Non-negative Matrix Factorization (NMF)
in higher dimensional spaces is preferred in content represen-
tation. NTF has been widely used to separate multichannel
recordings [3] using the information from different obser-
vations by joint optimization. Different from the separation
methods based on NTF, the proposed scheme uses only a
single observation represented at various time-frequency res-
olutions and enhances the quality of the separated sources
compared to the NMF based methods which use the informa-
tion from a single observation. The convergence of the NTF
algorithm yields the separated sources in each time-frequency
resolution. After reconstructing the sources in various reso-
lutions, the adaptation is performed based on a measure of
energy concentration as it is performed in [4].

There are some works which deal with the limitations of
fixed time-frequency resolution in source separation. In [5],
Wavelet Packet (WP) transform which is a multiscale trans-
form is used to decompose signals into sets of local features
with various degrees of sparsity. Then, the best subset is se-
lected from an overcomplete set of WP features of mixtures
with respect to the estimation of the separation error and used
for separation. In our previous work [4], the separated sources
obtained by applying NMF at different time-frequency reso-
lutions are adaptively fused based on maximum energy com-
paction principle. The method proposed in this work com-
bines the parallel NMF factorizations introduced in [4] into a
single NTF scheme, thus performs a joint optimization by fus-
ing the information from various time-frequency resolutions.
It is shown that the proposed scheme enhances the quality of
the separated sources.

2. PROPOSED METHOD

We introduce a MultiResolution NTF (MR-NTF) method
which performs separation of learned sources from mono-
phonic mixtures based on adaptive time-frequency resolution.
The proposed MR-NTF approach aims to optimize a general-
ized Kullback-Leibler (KL) divergence:
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where X ∈ RC×K×I is the observed mixture represented at
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is the corresponding amplitude envelopes for the frequency
basis vectors and R is the rank of factorization.
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time-frequency representations of their training signals via
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where Λcki = Xcki/X̂cki. The Q,S and A factors are
then applied on magnitude spectrogram tensor X of the mix-
ture to extract source estimates. Finally, we fuse the output
from multiple resolutions to obtain more robust estimates
of the sources using the maximal energy compaction prin-
ciple method used in [1], [4] for varying the time-frequency
resolution adaptively. This approach estimates the sparsity
of different time-frequency resolutions and mixes them ac-
cordingly so as to obtain minimal smearing both in time and
frequency directions.

2.1. Fusing the Time-Frequency Resolutions by MR-NTF

In particular, the MR-NTF bases of the j−th source (j =
1 · · · J) are learned from corresponding magnitude spec-
trograms Xjc at various resolutions c = 1 · · ·C using
NMF in the Dictionary Learning block of Fig.1. Bases ex-
tracted at different resolutions are combined into a matrix
S = [S1 · · ·SJR] which is of size K × JR. Note that, the
observed mixture signal x(t) does not include the source sig-
nals used for learning. The MR-NTF is applied on magnitude
spectrogram tensor X, which is constructed by concatenating
the spectrograms of observed mixture at various resolutions,
by fixing the bases to S ∈ RK×JR and learning their ampli-
tudes A ∈ RI×JR and the gains Q ∈ RC×JR of each factor
in each resolution.

Fig.1 illustrates main steps of the NTF-based source sep-
aration algorithm running on the multiresolution representa-
tion of the input mixture. In the figure, only two resolutions
are depicted for clarity, but the framework can be extended to
any number. The algorithm proposed for automatically sepa-
rating the sources is as follows:

Fig. 1. General scheme for the proposed MR-NTF.

1. The spectrograms Xc, c = 1 · · ·C at different time-
frequency resolutions are obtained. The hop size and
the frequency grids should be equal for all C STFT
resolutions in order to ensure that all STFT magnitudes
Xc are calculated in the same grid of time-frequency
locations. In order to achieve that, we also zero pad
the smaller STFT windows to ensure that all of the
STFTs will have the same number of frequencies. The
(k, i)−th time-frequency component of the mixture
spectrograms obtained at two different resolutions are
represented as Xcki where c = {1, 2} in Fig.1.

2. The spectrograms are combined into a tensor X, where
the c−th layer of X represents the mixture spectrogram
Xc calculated based on the c−th resolution.

3. The bases learned at the dictionary learning block are
fixed as S = [S1 · · ·SJR] where each column of S has
K frequency components.

4. MR-NTF is performed on the tensor X ∈ RC×K×I

by fixing S ∈ RK×JR and updating A ∈ RI×JR and
Q ∈ RC×JR at each iteration.

5. Upon convergence, A = [A1 · · ·AJR] and Q =
[Q1 · · ·QJR] are segmented into sources, each Aj ,Qj ,
j = 1 · · · J corresponding to one source.

6. The contribution of each source in the mixture magni-
tude spectrogram at the c−th resolution are estimated
from:

X̂jcki =

R∑
r=1

QjcrSjkrAjir (2)
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where Sjkr represents the k−th frequency component
of the r−th basis vector of the j−th source; Qjcr rep-
resents the gain of the r−th component of the j−th
source in the c−th resolution; Ajir represents the time
envelope for the r−th component of the j−th source in
the i−th time frame.

7. Complex source spectrograms are directly retrieved us-
ing Wiener filter [6]

F̂jcki = Fcki
X̂jcki∑
j X̂jcki

, (3)

where Fcki represents the k−th frequency component
of i−th time frame for the mixture signal represented
at the c−th resolution.

8. Time-domain estimate ŝjc(t) of the j−th source at the
c−th resolution is obtained by applying Inverse STFT
(ISTFT) on estimated coefficients F̂jcki.

2.2. Enhanced Sparsity by Maximal Energy Compaction

Our goal is to combine the source signals from different
resolutions in order to achieve a compact sparse repre-
sentation in each part of the time-frequency plane. This
combination is performed using the maximal energy com-
paction principle as in [1] by an additional filter bank, with
a fixed time-frequency resolution that transforms the result-
ing separated source signals into time-frequency coefficients
on the same time-frequency grid as in the analysis steps.
This is achieved by first transforming the estimated time-
domain sources ŝjc(t) into the time-frequency domain by
using a fixed time-frequency resolution. The resulting STFTs
Y c
jki, j = 1 · · · J correspond to the time-frequency represen-

tations of the sources obtained from MR-NTF in the c−th
layer.

In order to fuse the information efficiently at every time-
frequency bin (k, i) we consider a rectangular area Ω around
this point. There is a trade-off between selecting a small or
a large area. If the area is small, there won’t be enough co-
efficients to calculate a robust estimate of energy smearing.
If it is too big, it will not be a local estimate. Less smearing
around a time-frequency component yields a sparser repre-
sentation, thus maximizes the energy compaction. In order to
estimate the sparsity in a rectangular grid Ω = H×U , we use
a method based on kurtosis [1],[4]:

Kc
jki =

1
HU

∑
k′,i′∈Ω(|Y c

jk′i′ |2 − |Ȳ c
j |)4(

1
HU

∑
k′,i′∈Ω(|Y c

jk′i′ |2 − |Ȳ c
j |)2

)2 , (4)

where |Ȳ c
j | is the sample mean of squared STFT magnitudes

|Y c
jki|2 in the grid Ω. Kurtosis is widely used for measuring

the nongaussianity of a distribution and it grows with sparsity
resulting in peaky distributions [7].

In order to avoid hard switching from one resolution to
another, we fuse the squared magnitude coefficients from dif-
ferent resolutions. The fusion is performed by a weighted sum
of the squared magnitude spectrogram coefficients:

|Yjki|2 =

C∑
c=1

wc
jki|Y c

jki|2, (5)

where Y c
jki is the k−th frequency component at the i−th time

frame of the j−th source obtained for the c−th fixed time-
frequency resolution and the mixing weights are calculated
as:

wc
jki =

Kc
jki∑C

c=1 K
c
jki

. (6)

This step yields a single power-magnitude spectrogram
|Yjki|2 for each source. In (5), the estimated sources from
different time-frequency resolutions are combined in an adap-
tive way, such that the smearing in both time and frequency
is minimized.

The adaptive representation requires the phase informa-
tion in order to estimate the time-domain sources. Wiener
filtering of the mixture spectrogram Y is performed such as

Ŷjki = Yki
|Yjki|2∑J
j=1 |Yjki|2

. (7)

The ISTFT is then applied on the complex STFT coefficients
Ŷjki in order to transform the extracted sources Ŷjki to time
domain signals ŝj(t).

3. PERFORMANCE EVALUATION

In order to test the proposed approach, ten monophonic mix-
tures are synthetically generated by summing J = 2 different
but equal length sentences uttered by male and female speak-
ers from the TIMIT database. A training data of length 21
to 33 sec is used for each speaker in order to learn the bases
of each speaker. The length of the evaluation sentences are
2 to 3 sec long. All the audio files are sampled at 16 kHz.
Note that, the evaluation data is not included in the training
set. Evaluation of the quality of speech separation algo-
rithms is performed using Signal-to-Distortion-Ratio (SDR),
Signal-to-Interference-Ratio (SIR) and Signal-to-Artifacts-
Ratio (SAR) [8] and their perceptual correspondences Over-
all Perceptual Score (OPS), Interference-related Perceptual
Score (IPS) and Artifacts-related Perceptual Score (APS) [9].

The separation is performed using the proposed method
described in Section 2. The data is analyzed using a Han-
ning windowed STFT of NF = {512, 2048} samples. The
effect of the rank of the factorization is investigated by se-
lecting the training number of bases for each source as R =
{1, 10, 20, 50, 100}. Another important parameter is related
to the adaptive mixing. The adaptive mixing is performed
based on a sparsity measure calculated over a time-frequency
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grid Ω around each time-frequency component with various
sizes. As a compromise between sparseness and computa-
tional complexity, P = 3 and T = 3 are selected for the
grid width (frequency components) and height (time frames)
to calculate the kurtosis around each time-frequency compo-
nent.

We run the proposed MR-NTF algorithm for 50 iterations.
We perform separation using all combinations of the param-
eters on our dataset which amounted to 45 experiments (five
rank values, nine different grid size) for 10 test signals using
two different resolutions represented by C = 2 layered ten-
sors. We report the mean of the performance measures for
all these experiments on our dataset. In order to investigate
the improvement in the quality of the estimated sources ob-
tained by the proposed approach, we compare the results with
NMF results obtained at a single resolution and our previous
MR-NMF work [4]. In MR-NMF, different from the MR-
NTF, the multiple NMF instances are run independently and
the sources obtained from different resolutions are merged as
it is described in Section 2.2

In Fig.2, we investigate the effect of the rank parameter
on separation performance. Thus, R = {1, 10, 20, 50, 100}
bases are learned for each source in the training and used for
separating the sources. The horizontal axes in Fig.2 display
the number of bases per each source. In the figure, the results
obtained by fixed time-frequency resolutions by NMF are also
plotted to show the improvement achieved by mixing the fixed
time-frequency resolution results in an adaptive way. The best
performance is obtained when C = 2 where NF = 512 and
NF = 2048 are used for representing the mixture signal in
different layers of the input tensor. Thus, only the results ob-
tained on a C = 2 layer tensor where NF = {512, 2048}
are used to represent the input mixture are reported. As it is
seen from Fig.2, the proposed method increases the separa-
tion quality by around 2 dB and 3 dB in terms of SDR and
SIR while the SAR is decreased. If we compare MR-NMF
and MR-NTF results, we can see that both methods outper-
form the results obtained from a fixed resolution. We also
observe that MR-NTF outperforms MR-NMF by 1-2 dB in
terms of SDR and SIR for rank values of 10 and 20. We can
also conclude that, learning R = 20 bases for each source
gives the optimum results in terms of all measures which also
gives us the opportunity to separate the sources with a lower
computational complexity. In Table 1, we report the qual-
ity of the separated sources in terms of mean SDR, SIR and
SAR and their perceptual correspondences OPS, IPS and APS
obtained from one speech mixture where rank is selected as
R = 20 for each source. The results obtained by NMF for
two different resolutions are reported in the second and third
rows of the table in terms of SDR, SIR, SAR, OPS, IPS and
APS. The adaptive results obtained by our MR-NTF method
are reported on the fourth row. We observe that, the proposed
adaptive MR-NTF scheme improves the quality of the sep-
arated sources by 1-2 dB in terms of SDR and 4-5 dB in
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Fig. 2. The mean SDR, SIR and SAR values obtained for var-
ious number of bases per each source obtained using a fixed
time-frequency resolution NMF, MR-NMF and MR-NTF.

Table 1. Performance in terms of SDR, SIR, SAR, OPS, IPS
and APS values obtained by NMF, MR-NMF [4] and MR-
NTF methods on a mixture of female and male speaker.

SDR SIR SAR OPS IPS APS
NMF(512) 8.2 12.0 10.9 45.4 61.1 44.1
NMF(2048) 8.7 11.9 11.8 29.3 39.9 67.8
MR-NMF 9.6 16.1 11.0 44.5 65.1 42.4
MR-NTF 10.0 16.6 11.4 45.0 60.0 43.5

terms of SIR compared to fixed-resolution results. The ar-
tifacts obtained for the adaptive resolution scheme and the
fixed-resolution are similar. It is also observed that, the OPS
and IPS values obtained by MR-NTF and MR-NMF meth-
ods are similar to the highest OPS and IPS values obtained
by NMF at different time-frequency resolutions. The artifact
is increased in the proposed approach by an amount of 1-24
APS.

4. CONCLUSION

In this paper, we present an adaptive time-frequency resolu-
tion supervised method for separating known types of sounds
from a single observation. We represent a single mixture sig-
nal in various time-frequency resolutions in different layers
of the tensor. Then, we perform the proposed MR-NTF ap-
proach in order to extract the sources. We observe an im-
provement of 1-4 dB in terms of SDR and SIR relative to the
fixed time-frequency resolution separation results obtained by
NMF. In terms of perceptual measures OPS and IPS, the im-
provement is around 5-30. We also evaluate the performance
of the proposed approach on musical signals and observe a
similar improvement in the separation quality. However, since
the space is limited, we only report the results obtained on a
speech database.
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