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ABSTRACT

This paper presents a collaborative audio enhancement system that
aims to recover common audio sources from multiple recordings of
a given audio scene. We do so in the context where each recording
is uniquely corrupted. To this end, we propose a method of simul-
taneous probabilistic latent component analyses on synchronized in-
puts. In the proposed model, some of the parameters are fixed to be
same during and after the learning process to capture common audio
content while the rest models unwanted recording-specific interfer-
ences and artifacts. Our model also allows for prior knowledge about
the parameters of the model, e.g. representative spectra of the com-
ponents, to be incorporated in the factorization. A post processing
scheme that consolidates the extracted sources from the set of in-
puts is also proposed to handle the possible loss of certain frequency
regions. Experiments on commercial music signals with various ar-
tifacts show the merit of the proposed method.

Index Terms— Probabilistic Latent Component Analysis, Non-
negative Matrix Partial Co-Factorization, Convolutive Common
Nonnegative Matrix Factorization, Crowdsourcing

1. INTRODUCTION

Because of widespread use of hand-held devices, we often find many
overlapping recordings of an audio scene. Our goal in this paper is
to fully utilize these low cost noisy data by extracting common audio
sources from them so as to produce a higher quality rendering of the
recorded event. Hence, it can be seen as a collaborative approach to
audio enhancement sharing some similar concepts with crowdsourc-
ing methods [1, 2]. The first step towards unifying these recordings
is to synchronize them, something we can easily achieve using one
of the efficient and robust synchronization methods proposed in the
past [3, 4]. Once this is done, one could simply use the best avail-
able recording at any point in time, assuming there is an automated
way of quality-ranking the signals. This can be the simplest imple-
mentation of collaborative audio enhancement, where we can take
advantage of other people’s recordings to improve ours. However,
such simple reasoning does not work for many common cases, so
we will address this problem using a different approach.

Fig. 1 shows a case where the obvious approach might fail. Be-
tween the two synchronized recordings, we cannot simply choose
one because both are deficient, albeit in a different way. The bottom
recording has a poor high frequency response, which could be the
effect of a low-cost microphone or aggressive audio coding. On the
other hand, the full bandwidth recording at the top has some inter-
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Fig. 1: An example of a difficult scenario, when a synchronization
and selection method can easily fail to produce a good recording.
In this case we observe unwanted interference (top) and the other is
band-limited (bottom).

ference in the 3 – 4.3 second region, which is however not present in
the bottom one.

As the number of input recordings increases, the unique distor-
tions in each recording make choosing a single best recording diffi-
cult, if not impossible. One could encounter various types of non-
linear artifacts or interferences, e.g., the audience chatter near the
microphone, lens zooming noises, button clicks, clipping, band-pass
filtering, etc. Eventually we would like to solve this problem by us-
ing information from all recordings and combine it appropriately in
order to produce a higher quality render.

Nonnegative Matrix Partial Co-Factorization (NMPCF) was
proposed to extract common spectral components out of multiple
music excerpts in the past. Its several versions focussed on vari-
ous characteristics of drum sounds that are expected to be common
across multiple signals: spectral similarity between the drum solo
signals and the drum source components in the music mixture [5],
repeatability of drum source components across all the chunks of
the song [6], and their unified version [7]. Convolutive Common
Nonnegative Matrix Factorization (CCNMF) was recently intro-
duced to recover the common music and effect parts from multiple
soundtracks with different languages [8]. CCNMF differs from
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NMPCF in that it shares both basis vectors and corresponding en-
codings of the common components to extract the music and effects
while the set-aside track-specific ones capture dialogues in particular
languages.

The proposed method, Probabilistic Latent Components Shar-
ing (PLCS), is based on the probabilistic counterparts of Nonnega-
tive Matrix Factorization (NMF) [9, 10], such as Probabilistic Latent
Semantic Indexing (PLSI) [11, 12] and Probabilistic Latent Compo-
nent Analysis (PLCA) [13]. PLCS extends PLCA with the common
component sharing concept. PLCS differs from the NMPCF-based
methods in that it decomposes each input matrix into three parts,
rather than just two, so that we can share both bases and encoding
matrices while providing slack in the model by letting the weights of
the components to not be shared. Because PLCS controls the contri-
bution of the latent components with probabilistic weights, P (l)(z),
it gives more intuitive interpretation of the roles of components in the
reconstruction whereas in the CCNMF model [8] they are absorbed
in the filtering factor. Moreover, because the whole process is based
on the probabilistic model, we could explicitly take advantage of
Bayesian approaches, which is not straightforward in either NMPCF
or CCNMF. The Bayesian approach provides a straightforward way
to involve a certain prior knowledge about the bases, which we can
get in advance from the cleaner, but different versions of the similar
sources. Finally, we propose an additional post processing method
to efficiently consolidate recording-specific reconstructions.

This paper consists of the following sections. Section 2 is an
introduction to PLCA from which the proposed model is originated.
Section 3 and 4 provide the basic PLCS model and its version us-
ing prior information, respectively. They are followed by Section 5
where the post processing procedure is discussed. Section 6 shows
the experimental results on real signals. Lastly, Section 7 summa-
rizes the work.

2. SYMMETRIC PLCA

Given the magnitude of an input spectrogram, V = |X|, with el-
ements Vf,t indexed by the frequency bin f and the time frame t,
symmetric PLCA tries to maximize the log-likelihood P of observ-
ing the energy quanta of Vf,t,

P =
∑
f,t

Vf,t logP (f, t) =
∑
f,t

Vf,t log
∑
z

P (f, t|z)P (z)

=
∑
f,t

Vf,t log
∑
z

P (f |z)P (t|z)P (z).

To get the second equality, the component-specific distributions
P (f, t|z) is further factorized into three factors: the frequency
distribution P (f |z), its temporal activations P (t|z), and the com-
ponent specific weights P (z). Note that the term “symmetric” came
from this tri-factorization [11], which eventually let us have con-
trol over additional temporal distributions of components as well
as frequency distributions. This being a latent variable model, we
use the Expectation-Maximization (EM) algorithm to estimate its
parameters. In the E-step we find a posterior probability of the latent
variable z given the time and frequency indices,

P (z|f, t) = P (f |z)P (t|z)P (z)∑
z P (f |z)P (t|z)P (z)

.

X X = 
Vft P (f, t)

P (f |z)

P (t|z)P (z)

Fig. 2: A matrix representation of the PLCA with four components.
Note that the weights P (z) are represented as a diagonal matrix.

In the M-step the expected complete data log-likelihood is maxi-
mized, which yields to the following update rules:

P (f |z) =
∑

t Vf,tP (z|f, t)∑
f,t Vf,tP (z|f, t) , P (t|z) =

∑
f Vf,tP (z|f, t)∑
f,t Vf,tP (z|f, t) ,

P (z) =

∑
f,t Vf,tP (z|f, t)∑

f,t,z Vf,tP (z|f, t) . (1)

Fig. 2 depicts the relationship between the input matrix V and the es-
timated joint distribution P (f, t) from which the observations were
drawn.

3. PROBABILISTIC LATENT COMPONENTS SHARING

Let us assume that there are L input magnitude spectrogram ma-
trices, corresponding to L available recordings in the collaborative
audio enhancement application. We partition the values of the la-
tent components in the l-th recording z(l) into two disjoint subsets,
z(l) = zC ∪ z(l)I , where zC is the subset that contains indices of the
common components shared across all recordings, and z(l)I contains
those of all the other components present only in the l-th recording.
Now, the log-likelihood P of observing L given recordings can be
written as:

P =
∑
l

∑
f,t

V
(l)
f,t log

{ ∑
z∈zC

PC(f |z)PC(t|z)P (l)(z)

+
∑

z∈z(l)
I

P
(l)
I (f |z)P (l)

I (t|z)P (l)(z)

}
. (2)

The main new feature in (2) is to fix both the spectral and the tempo-
ral distributions to be same across all inputs for z ∈ zC , which are
specified as the common variables PC(f |z) and PC(t|z). On the
other hand, components indicated by z ∈ z(l)I represent recording-
specific sound components, such as interferences, characterized
by parameters P (l)

I (f |z) and P (l)
I (t|z). We refer to this model as

PLCS, for which the E-step is:

P (l)(z|f, t) = P (l)(f |z)P (l)(t|z)P (l)(z)∑
z∈z(l) P

(l)(f |z)P (l)(t|z)P (l)(z)
, ∀z ∈ z(l).

Note that the parameters P (l)(f |z) and P (l)(t|z) can either refer
to the common parameters PC(f |z) and PC(t|z) when z ∈ zC or
P

(l)
I (f |z) and P (l)

I (t|z) when z ∈ z(l)I , respectively.
Using Lagrange multipliers to ensure that the probability distri-

butions sum to one, we maximize the expected complete data log-
likelihood with following update rules as the M-step:

For z ∈ z(l)I

P
(l)
I (f |z) =

∑
t V

(l)
f,t

P (l)(z|f,t)∑
f,t V

(l)
f,t

P (l)(z|f,t)
, P

(l)
I (t|z) =

∑
f V

(l)
f,t

P (l)(z|f,t)∑
f,t V

(l)
f,t

P (l)(z|f,t)
,

(3)
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For z ∈ zC

PC(f |z) =
∑

l,t V
(l)
f,t

P (l)(z|f,t)∑
l,f,t V

(l)
f,t

P (l)(z|f,t)
, PC(t|z) =

∑
l,f V

(l)
f,t

P (l)(z|f,t)∑
l,f,t V

(l)
f,t

P (l)(z|f,t)
,

(4)
For z ∈ z(l)

P (l)(z) =

∑
f,t V

(l)
f,tP

(l)(z|f, t)∑
z,f,t V

(l)
f,tP

(l)(z|f, t)
.

Note that the updates for PC(f |z) and PC(t|z) include summation
over l to involve all the reconstructions of common components.

4. INCORPORATING PRIORS

It is often useful to involve prior knowledge about the parameters in
probabilistic models. For instance, we can have a clean recording
of the same content as in the provided inputs, albeit recorded at a
different time (e.g. a studio recording of a song whose recordings
we obtain from a concert). Or, it is also possible to assume that the
interferences are a certain kind of sources, e.g. human voice. On
the other hand, we cannot simply learn the bases of those a priori
signals and fix them as our target parameters, PC(f |z) or P (l)

I (f |z),
as there is no guarantee that the a priori known signals have exactly
the same spectral characteristics with the target sources. To address
this problem we follow a Bayesian approach to derive a maximum a
posteriori (MAP) estimator of the parameters.

First, we learn the bases of the magnitude spectrograms of the
similar sources and interferences by directly applying PLCA update
rules in (1). The learned bases vectors Psource(f |z) and P (l)

interf(f |z)
are used in the PLCS model to construct a new expected complete
data log-likelihood

〈P〉 =
∑
l,f,t

V
(l)
f,t

{ ∑
z∈zC

(
P (l)(z|f, t) logPC(f |z)PC(t|z)P (l)(z)

+ αPsource(f |z) logPC(f |z)
)

+
∑

z∈z(l)
I

(
P (l)(z|f, t) logP (l)

I (f |z)P (l)
I (t|z)P (l)(z)

+ βP
(l)
interf(f |z) logP

(l)
I (f |z)

)}
,

where α and β controls the amount of influence of the prior bases.
Once again, by using proper Lagrange multipliers, we can derive the
final M-step with priors as follow:

For z ∈ z(l)I

P
(l)
I (f |z) =

∑
t V

(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)∑

f,t V
(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)

, (5)

For z ∈ zC

PC(f |z) =
∑

l,t V
(l)
f,tP

(l)(z|f, t) + αPsource(f |z)∑
l,f,t V

(l)
f,tP

(l)(z|f, t) + αPsource(f |z)
. (6)

E-step and the other M-step update rules are not changed from
the original PLCS model. Fig. 3 summarizes the whole PLCS pro-
cess on three different inputs: low-pass filtered, high-pass filtered,
and mid-pass filtered inputs. All three inputs also contain unique
distortions represented with different noise patterns in the figure.

X X 

X X 

X X 

V (1)

V (2)

V (3)

P
(1)
I (f |z)

P
(2)
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Fig. 3: An example of common source separation process using
PLCS on three defected input matrices and prior information.

Note that the first common component of l = 1 case (first row)
degrades the reconstruction as its basis vector has high frequency
energy while V (1) was low-pass filtered. Therefore, the first weight
in the diagonal matrix P (1)(z = 1) has a very low (dark) value.
Similarly, P (2)(z = 4), P (3)(z = 1), and P (3)(z = 4) are also
those weights that turn off inactive common components. Note also
that the a priori learned bases Psource(f |z) are full-banded and have
somewhat different spectral shapes from the common bases, so they
cannot replace the common bases as they are. To recover the mag-
nitudes of the desired sources, we multiply the sum of the posterior
probabilities of z ∈ zC to the input complex-valued spectrograms
Xf,t,

Ŝ
(l)
f,t = X

(l)
f,t

∑
z∈zC

P (l)(z|f, t),

where Ŝ(l) is the spectrogram of the separated sources from the l-th
input.

5. POST PROCESSING

It is possible that the recorded signals exhibit non-uniform frequency
responses due to recording device and format specifications. The
PLCS method can identify the isolated common sources, but it is not
expected to ameliorate effects like frequency response losses, since
that information will be coded in the basis vectors and is not readily
accessible as an artifact. We propose a collaborative post processing
step to address this issue. Our approach is motivated by the fact that
even if most of the recordings are filtered in some way, one recording
that did not go through such filtering can give us enough information
to recover the full-banded reconstruction. Suppose that we get L re-
covered spectrograms Ŝ(l)

f,t using PLCS. The post processing begins
with getting the normalized average magnitude spectrum of those re-

constructions y(l)f =
∑

t |Ŝ
(l)
f,t
|∑

f,t |Ŝ
(l)
f,t
|
. Now, we can obtain some global

weights by considering the balance among different recordings in

898



each particular frequency bin, wf =
∑

l y
(l)
f

maxl y
(l)
f

.

Then, the final complex spectrogram of the desired output is ob-
tained by dividing the sum of the band-limited reconstructions with
the corresponding elements of the global weight:

Ŝf,t =

∑
l Ŝ

(l)
f,t

wf
. (7)

6. EXPERIMENTAL RESULTS

In this section, we compare the proposed PLCS models and other
relevant methods in terms of signal-to-distortion ratio (SDR) [14],
because we desire to reduce all the artifacts, noises, and interfer-
ences. To this end, we use five different single channel songs with
44.1kHz sampling rate and 16 bit encoding, each of which has a
pair of versions: a 15 seconds-long clean live recording S as the
source and a 30 seconds-long clean studio recording Sprior as the
prior information of the source. The professional live recording S
goes through three different sets of artificial deformations to simu-
late usual recording scenarios. The resulting three mixture spectro-
grams are:
• X(1): Low-pass filtering at 8kHz (a recording with a low

sampling rate) / additional female speech as an interference
• X(2): High-pass filtering at 500Hz / additional female speech

different from X(1) as an interference
• X(3): Low-pass filtering at 11.5kHz / high-pass filtering at

500Hz / clipping.
Short-time Fourier transform was applied to the signals with fol-

lowing settings: 1024 sample frame-length and 512 sample of hop
size. For the priors, we get 100 bases for the source prior Psource(f |z)
from the studio recording Sprior while 50 interference prior bases
Pinterf(f |z) are learned from anonymous female speeches [15].

We compare five different models, including:
• Median: Pixel-wise medians of L input magnitude spectro-

grams are calculated as follows

|Ŝf,t| = median(V (1)
f,t , V

(2)
f,t , · · · , V

(L)
f,t ).

The phase information of the sum of inputs is used to invert
the reconstruction to the time domain.

• Oracle PLCA with ideal bases: We run PLCA on the source
|S| to get the ideal bases P (l)

ideal(f |z) that perfectly represent
spectral characteristics of the desired source. And then, we
apply PLCA again on each V (l) by initializing and fixing
some of the bases with P

(l)
ideal(f |z) while learning the oth-

ers to capture interferences and artifacts. We get 100 bases
for P (l)

ideal(f |z) from the first PLCA, and learn 50 individual
components in the second round. Note that we also use the
compensation process from Section 5 for this model.

• PLCS with initialization: This model learns the common
bases and encodings using the PLCS model and the post
processing. It initializes its bases with Psource(f |z) learned
from the studio recording, but learn the bases PC(f |z) using
the usual update rules (3) and (4) rather than (5) and (6). We
randomly initialize 50 individual bases for P (l)

I (f |z).
• PLCS with the source prior: This PLCS model uses the

source priors Psource(f |z) both to initialize and to learn
PC(f |z) using (6). 50 individual bases are randomly ini-
tialized for P (l)

I (f |z) and learned using (3).
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Fig. 4: The mean and song-specific improvements of SDR by each
model for the consolidated reconstruction.

• PLCS with the source and interference priors: This full
PLCS model uses both the source and interference priors,
Psource(f |z) and Pinterf(f |z) to initialize them and learn them
using both (5) and (6). Note that we do not assume the in-
terference prior for X(3), because it is riddled with clipping,
not an additional interference.

Fig. 4 shows the SDR improvements caused by the proposed
systems. The most noticeable observation is that the medians of the
three mixture spectrograms do not provide good results as there is
no guarantee that the median of the contaminated pixels is from the
common source. For the given five songs, we can also see that the
proposed PLCS models outperform the maximal performance bound
of the PLCA model with ideal bases, mainly because of the strong
sharing of both spectral and temporal aspects of the common com-
ponents. Moreover, PLCS models exhibit less variance than PLCA.
On top of that, PLCS with priors can provide better performance
than the usual initialization method by gently reducing the impact of
prior information as the iteration i increases (α = β ∝ e−i). Al-
though it is not observable in this objective quality measurements,
adding the interference priors improves the perceptual sound quality
of the result.

7. CONCLUSION

We propose the PLCS model for collaborative audio enhancement,
where common audio sources are constructed out of multiple noisy
recordings of the same audio scene. The model is characterized by
its ability to share both spectral and temporal marginal factors while
providing a level of flexibility by not sharing the weight probabilities
P (l)(z). PLCS also models individual artifacts from the common
sources by not sharing some components. The advantage of this
sharing concept was shown by experiments on commercial music
signals by outperforming the ordinary PLCA model even with ideal
bases which are not available in realistic cases. The proposed model
is also equipped with a consolidation process that can harmonize the
recording-specific reconstructions. Finally, prior information can be
easily use in this model, which further improves the performance in
our simulations.

899



8. REFERENCES

[1] D. C. Brabham, “Crowdsourcing as a model for problem solv-
ing: An introduction and cases,” Convergence: The Inter-
national Journal of Research into New Media Technologies,
vol. 14, no. 1, pp. 75–90, 2008.

[2] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin,
L. Bogoni, and L. Moy, “Learning from crowds,” Journal of
Machine Learning Research, vol. 11, pp. 1297–1322, Aug.
2010.

[3] N. J. Bryan, P. Smaragdis, and G. J. Mysore, “Clustering
and synchronizing multicamera video via landmark cross-
correlation,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, Japan, 2012.

[4] P. Shrestha, M. Barbieri, H. Weda, and D. Sekulovski, “Syn-
chronization of multiple camera videos using audio-visual fea-
tures,” IEEE Transactions on Multimedia, vol. 12, no. 1, pp.
79–92, 2010.

[5] J. Yoo, M. Kim, K. Kang, and S. Choi, “Nonnegative matrix
partial co-factorization for drum source separation,” in Pro-
ceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Dallas, Texas, USA,
2010.

[6] M. Kim, J. Yoo, K. Kang, and S. Choi, “Blind rhythmic source
separation: Nonnegativity and repeatability,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Dallas, Texas, USA, 2010.

[7] ——, “Nonnegative matrix partial co-factorization for spectral
and temporal drum source separation,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 5, no. 6, pp. 1192–
1204, 2011.

[8] P. Leveau, S. Maller, J. Burred, and X. Jaureguiberry, “Convo-
lutive common audio signal extraction,” in Proceedings of the
IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), New Paltz, NY, 2011, pp. 165–168.

[9] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, pp. 788–
791, 1999.

[10] ——, “Algorithms for non-negative matrix factorization,” in
Advances in Neural Information Processing Systems (NIPS),
vol. 13. MIT Press, 2001.

[11] T. Hofmann, “Probablistic latent semantic indexing,” in Pro-
ceedings of the ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), 1999.

[12] ——, “Probablistic latent semantic analysis,” in Proceedings
of the International Conference on Uncertainty in Artificial In-
telligence (UAI), 1999.

[13] P. Smaragdis, B. Raj, and M. Shashanka, “A probabilistic la-
tent variable model for acoustic modeling,” in Neural Informa-
tion Processing Systems Workshop on Advances in Models for
Acoustic Processing, 2006.

[14] E. Vincent, C. Fevotte, and R. Gribonval, “Performance mea-
surement in blind audio source separation,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[15] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,
D. S. Pallett, N. L. Dahlgren, and V. Zue, “TIMIT acoustic-
phonetic continuous speech corpus,” Linguistic Data Consor-
tium, Philadelphia, 1993.

900


