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ABSTRACT

In this paper we present a new method for musical audio
source separation, using the information from the musical
score to supervise the decomposition process. An original
framework using nonnegative matrix factorization (NMF)
is presented, where the components are initially learnt on
synthetic signals with temporal and harmonic constraints. A
new dataset of multitrack recordings with manually aligned
MIDI scores is created (TRIOS), and we compare our sep-
aration results with other methods from the literature using
the BSS_EVAL and PEASS evaluation toolboxes. The results
show a general improvement of the BSS_EVAL metrics for
the various instrumental configurations used.

Index Terms— Audio source separation, musical score,
nonnegative matrix factorization, multitrack dataset

1. INTRODUCTION

Musical audio source separation seeks to separate the signal
of each instrument or musical source in a polyphonic mixture.
Once separated, the sources can be processed separately and
reassembled eventually, and so musical audio source separa-
tion can be used for music remastering, desoloing, denoising,
etc. Many approaches have been addressed in the last two
decades in order to achieve this separation. The most com-
monly used consists of decomposing a time-frequency repre-
sentation of the mixture signal, with methods such as Non-
negative Matrix Factorization (NMF), Independent Compo-
nent Analysis (ICA), Probabilistic Latent Component Analy-
sis (PLCA), etc. Among these factorization techniques, NMF
is probably the most popular for musical audio, as it describes
the musical signal as a nonsubstractive combination of sound
objects (or ‘atoms’) over time.

The first musical application of NMF has been automatic
music transcription [1], followed by musical audio source
separation [2]. In this latter work, the authors present a
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framework for Blind Source Separation (BSS) using NMF
and time-frequency masking, where no prior musical infor-
mation is provided to the separation algorithm. The extracted
sounds thus need to be identified and grouped after the de-
composition process, in order to recreate the estimated signals
of the separated instruments. In [3], temporal continuity and
sparseness criteria are incorporated within the NMF algo-
rithm, in order to improve the detection and the isolation of
musical sounds. But once again, the extracted components
need to be associated with a specific source manually, which
decreases dramatically the interest of the method in terms of
automation and general performance.

In the last few years, the use of a symbolic representa-
tion of the musical signal (such as an aligned MIDI score)
has been addressed to supervise the decomposition process.
A musical score contains indeed a wide range of information,
such as the pitch, the onset time and the duration of each note
played by each instrument. This data can therefore be used to
provide temporal and spectral information to the separation
algorithm, and help improve its degree of performance as all
the components are automatically assigned to an instrument.
In [4], the MIDI score of each instrument is synthesized sep-
arately, and the components of a PLCA decomposition are
learnt on these synthetic signals in a preliminary phase. Each
instrument has a fixed number of atoms initialized randomly,
and the data learnt is then used to initialize a second PLCA
routine on the the actual mixture. In [5], the information from
the score is used to initialize an algorithm based on a paramet-
ric decomposition of the spectrogram, using an original NMF
framework. In [6], the separation is performed in real-time,
with a score-follower using a hidden Markov model approach
and a source separator extracting the harmonics of each in-
strument. In [7], the NMF decomposition is constrained by
the information extracted from the score, and the basis func-
tion and the gain of each note are initialized with an harmonic
comb and a binary function, respectively. In [8] finally, the
solo voice from a song is represented by a source-filter model,
and is extracted through a NMF algorithm with similar har-
monic and temporal constraints generated from the score.
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In this paper, we propose a new method for score in-
formed source separation, combining ideas from the various
approaches mentioned above. We learn the components of
each instruments on synthetic signals in a preliminary phase,
and we also use the temporal and harmonic information pro-
vided from the score to constrain a classic NMF algorithm.

The paper is organized as follows. In section 2 we de-
scribe our general framework for source separation, using
constrained NMF and score synthesis. Then, in section 3, we
assess our method with the usual evaluation toolboxes and
we compare its separation results with two previous methods.
Conclusion and perspectives for future work are presented in
section 4. Finally, we present in an appendix a new dataset of
multitrack recordings with aligned MIDI scores, created for
the evaluation of score informed source separation methods
or other applications.

2. DESCRIPTION OF THE METHOD

Our score informed source separation method is composed of
two different phases, consisting of consecutive NMF routines.
In the preliminary learning phase, the components of each
instruments are learnt separately on signals synthesized from
the score, and in the unmixing phase these components are
then adapted to fit the actual instrumental mixture.

For each NMF routine, we use the 3-divergence as a cost
function and the Maximization-Minimization (MM) descent
algorithm described in [9]. The important part of this algo-
rithm is the initialization of the basis function and the activa-
tion coefficients of each component, as demonstrated bellow.
A fully detailed and illustrated description of our score in-
formed source separation method can be found in [10].

2.1. Score synthesis and preliminary learning phase

We initially synthesize the MIDI score of each instrument
separately, in order to create a model for the signals of the
different sources we intend to extract. This method has been
introduced in [4], where a Dynamic Time Wrapping (DTW)
technique was used to align the synthesized signals on the
mix. In this paper we only consider perfectly aligned MIDI
files, and so we do not deal with the problem of score-to-audio
alignment or audio realignment by time wrapping.

The synthetic signals are then decomposed individually
by a NMF routine using one component per note, which gen-
erates relevant models for the spectral basis and the ampli-
tude of each note. The spectral bases of pitched instruments
are initialized by harmonic combs, and those of percussive
instruments are initialized by uniform distributions. We also
add some extra-components to collect the residuals sounds
from the synthetic signals of the pitched instruments.

This ‘score synthesis’ method has the advantage of being
very easy to use, compared to what could be the implementa-
tion of analytic models for each register of each instrument.

2.2. Temporal and harmonic constraints

The information from the musical score is not only used to
provide signal models by score synthesis as in [4], but also to
incorporate temporal and harmonic constraints in the decom-
position process which aims to factorize one note per atom.

After extracting the onset and offset times from the MIDI
score of an instrument, we initialize the activation coefficients
of each note by a simple binary function, equal to 1 if the note
is being played and to O if not. This creates a ‘pianoroll’ rep-
resentation of the score, used to initialize the gain matrix as in
[5] and [7]. The advantage of this constraint is to enforce the
coefficients initialized to O to remain to 0. The moments of
silence will therefore remain silent, and only the coefficients
initialized to 1 will fit the actual temporal envelopes of the
corresponding notes. In practice, we enlarge slightly the ini-
tializations to 1 at the beginning and the end of each note, to
avoid possible alignment errors or slow releases of notes.

As mentioned above, we initialize the spectral basis wy
of each component k£ with a harmonic comb. This constraint
is inspired from [7], and helps the NMF algorithm to segre-
gate the notes being played simultaneously by differentiating
them according to their harmonic structure. If we call Ny, the
number of harmonics of the model, g the magnitude spectrum
of the analysis window and f¥ the fundamental frequency of
the corresponding note, we define the initialization of wy ;, as

Np

work = Y g(f —nff)-

n=1

D

2.3. Unmixing phase and general framework

Once the preliminary learning phase is over, we aggregate the
spectral bases and the activation coefficients learnt in order
to initialize a single NMF routine on the actual instrumental
mixture. During this unmixing phase, the synthetic models
are then adapted to fit the real world data. Again, we add
some extra components with random initializations to collect
the residuals sounds from the musical mixture in an additional
source, such as impacts, blowing, clapping, plucking, etc.

Eventually, we use the factorization obtained from the un-
mixing phase to extract the signal of each estimated source,
with the Wiener-filtering technique described in [9]. The gen-
eral framework of our method is presented in Figure 1.
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Fig. 1. General framework for the proposed method



BSS_EVAL 3.0 PEASS 2.0

Extract (dataset) Method SDR @B) | SIR @B) | SAR @B) || OPS (%) | TPS %) | IPS (%) | APS (%)
. Ganseman et al.,, 2010 (4] || 6.64 | 12.44 | 10.34 || 23.73 | 44.36 | 20.51 | 42.10
Quintet MIREX) | 4o nnequin etal, 2011 [5] | 6.10 | 12.78 | 7.87 | 25.05 | 29.73 | 48.94 | 29.99
Proposed 10.07 | 16.62 | 11.39 | 27.08 | 37.90 | 36.02 | 36.80

Quartet (Bach10) | Oanseman etal 2010 [T || 5.82 9.92 9.06 9.61 | 21.60 | 10.47 | 43.32
Hennequin et al., 2011 [5] | 3.60 7.35 708 || 22.83 | 31.39 | 30.19 | 46.38

Proposed 734 | 11.88 | 10.04 || 894 | 21.34 | 1045 | 40.51

Ganseman et al.,, 2010 (4] || 7.58 | 11.79 | 10.39 || 18.71 | 37.46 | 21.04 | 49.50

Mozart (TRIOS) |y nequin etal, 2011 (5] | 894 | 1542 | 1023 | 36.43 | 52.89 | 53.92 | 48.22
Proposed 10.27 | 15.44 | 12.17 || 18.36 | 34.53 | 22.57 | 26.04

Ganseman et al., 2010 [4] 4.46 9.76 7.24 18.90 38.89 18.17 46.19

Schubert (TRIOS) |y equin etal, 2011 (5] | 970 | 15.36 | 1156 | 34.91 | 47.93 | 49.20 | 47.81
Proposed 10.20 | 13.80 | 12.89 || 22.26 | 42.08 | 32.27 | 42.87

Ganseman et al.,, 2010 [4] | 6.14 | 10.98 | 8.91 25.19 | 57.89 | 29.03 | 39.25

Brahms (TRIOS) | 1o equin etal, 2011 [5] || 548 | 11.60 | 837 | 27.27 | 36.04 | 48.54 | 40.06
Proposed 9.80 | 15.59 | 11.50 | 22.58 | 37.67 | 30.00 | 50.02

Lussier (TRIOS) Ganseman et al., 2010 [4] 7.70 12.09 9.99 26.62 44.30 | 31.74 | 54.41
) Hennequin et al., 2011 [5] 2.47 8.55 6.52 28.32 | 45.46 | 53.87 | 30.39
Proposed 9.10 15.13 | 10.87 28.06 35.95 | 35.26 | 26.36

. Ganseman et al., 2010 [4] —2.65 2.48 5.22 24.05 37.73 | 28.31 24.29

Take Five (TRIOS) | 1o equinetal, 2011 [5] | —3.87 | 1.51 | 487 | 1957 | 27.56 | 35.17 | 10.94
Proposed 5.81 13.70 7.71 34.06 | 20.90 | 32.99 | 24.65

Table 1. Separation results of our method compared with two previous methods from the literature. The three methods are
applied to the same 10 seconds of each extract from the datasets used. We display the mean BSS_EVAL and PEASS metrics
obtained for all the extracted sources of each musical extract. Higher is better for all scores, best scores are shown boldfaced.

3. EVALUATION OF THE METHOD

As already done in [11] on a smaller scale, we assess our
source separation method with popular evaluation toolboxes,
and we compare it with previous methods from the literature.

3.1. Evaluation metrics

We use the BSS_EVAL toolbox [12], where the performance
measures are defined as energy ratios between the original
sources, the extracted sources and the various estimated error
terms. These energy ratios are the Signal to Distortion Ratio
(SDR), the Signal to Interference Ratio (SIR) and the Signal
to Artifacts Ratio (SAR), all expressed in dB.

We also use the PEASS toolbox [13], which provides
similar performance measures but with also additional met-
rics in the form of perceptually-motivated scores rather than
energy ratios. These scores are the Overall, Target-related,
Interference-related and Artifacts-related Perceptual Scores
(OPS, TPS, IPS and APS, respectively), all expressed in %.

3.2. Experimental setup

We apply our method to various musical extracts: a quintet
from the MIREX 2007 dataset, a quartet from the Bach10
dataset [6], and trios from the TRIOS dataset (see appendix).

For the NMF routines, we use the Kullback-Leibler di-
vergence (#=1) on the magnitude spectrogram with 15 itera-
tions for the learning phase and 10 iterations for the unmix-
ing phase, as this gives better results [10]. The spectrogram is
computed with a 4096-point (93ms) Hann window and 87.5%
overlap. For the pianorolls used for initialization, we add 0.1s
before and 0.2s after each note, and for the unmixing phase
we add 30 extra-components to collect the residual sounds.
We evaluate our method on 10 seconds of each recording, on
selected sections where all the instruments are playing.

3.3. Separation results

We compare our separation results with an updated version of
[4] and with [5], both adapted to suit the datasets used!. The
results are summarized in table 1, where the metrics of the
extracted sources are averaged for each different extract.
From these results, we notice a general improvement of
the BSS_EVAL metrics with our proposed method. This is
probably due to the fact that the information from the score is
exploited to its full potential, with the score synthesis and the
constraints mentioned above. The PEASS metrics give better
results with [S5] though, so this enhancement still depends on

The authors would like to thank Joachim Ganseman and Romain Hen-
nequin for providing the code of their own source separation methods.
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the various evaluation criteria and the way they are calculated.

We also compare the computation time of each method
with the experimental setup described above (calculated on a
macbook pro 2.26 GHz Intel Core 2 Duo, with 8GB memory).
The results are presented in table 2. We notice that our method
is slower than [4] but much faster than [5], certainly due to the
relative simplicity of its NMF algorithm used in both phases.

Computation time (s)
Method Trios | Quartet | Quintet
Ganseman et al., 2010 [4] 11 13 17
Hennequin et al., 2011 [5] || 13066 | 6234 10296
Proposed 41 37 69

Table 2. Average computation time for the three methods
depending on the number of instruments in the mixture.

The different datasets used for this experiment, the result-
ing extracted sounds and the code of our proposed method are
all available through the C4DM Research Data Repository at
http://cd4dm.eecs.gmul.ac.uk/rdr/.

4. CONCLUSION

In this paper, we have presented an efficient method for score
informed source separation. It factorizes one note per com-
ponent in a NMF framework, by initially informing the fea-
tures of these components with a constrained learning phase
on separated signals synthesized from the score.

This method appeared to give good audio results and good
performance measures in comparison with other methods
from the literature. Future work could include the incorpora-
tion of a smoothness criteria for better perceptual results.

5. APPENDIX: THE TRIOS DATASET

The TRIOS dataset is a new score-aligned multitrack dataset
that can be used for the evaluation of various tasks, such
as score informed source separation, automatic music tran-
scription, etc. This dataset consists of the separated tracks
from five recordings of chamber music trio pieces, with their
aligned MIDI scores. The five recordings are extracted from:
a trio for clarinet, viola and piano by Mozart

a trio for violin, cello and piano by Schubert

a trio for violin, French horn and piano by Brahms

a trio for trumpet, bassoon and piano by Lussier

a version of “Take Five” for alto sax, piano and drums

The separated tracks and the aligned MIDI scores are cre-
ated as following. First, the original MIDI files are created or
downloaded, and imported into a MIDI sequencer. The differ-
ent tracks are then recorded separately, whilst the musicians
listen to the other synthesized parts through headphones. The
recordings are afterwards edited and mixed, and the MIDI
scores are eventually manually aligned with Sonic Visualizer.
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