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ABSTRACT

We propose an interactive refinement method for supervised
and semi-supervised single-channel source separation. The
refinement method allows end-users to provide feedback to
the separation process by painting on spectrogram displays of
intermediate output results. The time-frequency annotations
are then used to update the separation estimates and iteratively
refine the results. The initial separation is performed using
probabilistic latent component analysis and is then extended
to incorporate the painting annotations using linear grouping
expectation constraints via the framework of posterior regu-
larization. Using a prototype user-interface, we show that the
method is able to perform high-quality separation with mini-
mal user-interaction.

Index Terms— source separation, probabilistic latent
component analysis, user-interaction

1. INTRODUCTION

One of most promising source separation approaches is based
on supervised and semi-supervised non-negative matrix fac-
torization (NMF) methods [1, 2, 3, 4] and its probabilistic
counterparts applied to audio spectrogram data [5, 6, 7, 8, 9].
While these methods can achieve high-quality separation in
some cases, the results are often far from perfect. Sound arti-
facts such as musical noise are also a problem.

To overcome these issues, we propose an interactive re-
finement method that enables end-users to provide feedback
into the separation process. We do this by allowing users to
paint on spectrogram displays of intermediate output results.
The annotations are then used to update the separation esti-
mates and the entire process is repeated as shown in Fig. 1.
The initial separation is performed via supervised or semi-
supervised probabilistic latent component analysis [8], and
then refined in an interactive fashion by constraining the prob-
abilistic model via the framework of posterior regularization.
We show how this can greatly refine the separation estimates,
and we provide intuition as to why this happens.

∗This work was performed while interning at Adobe Research.

Fig. 1. (First Row) Mixture spectrogram of Mary Had A Lit-
tle Lamb. (Second Row) Initial separated E note (left) and re-
maining notes (right) after supervised separation using PLCA.
(Third Row) Annotations overlaid on the incorrectly sepa-
rated regions. (Bottom) Refined separated E note and remain-
ing notes after incorporating the annotations.

2. PROPOSED APPROACH

The proposed refinement method is an iterative procedure
that separates a mixture signal into its respective sources, and
then allows a user to correct for errors in the output estimates
and update the results, creating a feedback-loop as shown
in Fig. 2. The initial separation method is discussed in Sec-
tion 2.1, Section 2.2, and Section 2.3, and the method of user
annotations is discussed in Section 2.4.

2.1. Probabilistic Model

To initially separate a mixture recording into its respective
components, we use probabilistic latent component analysis
(PLCA) [8]. The method models normalized spectrogram
data X ∈ R

Nf×Nt

+ as a factorized two-dimensional proba-
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Fig. 2. Block diagram of the proposed refinement method.

bility distribution over time and frequency

P (f, t) =
∑
z

P (z)P (f |z)P (t|z), (1)

where f , t, and z are outcome values of the random vari-
ables F , T , and Z, and Nf , Nt, and Nz are the possible
number of outcomes respectively. Note, Z is a latent vari-
able. Nz is typically chosen by a user and Nf and Nt are a
function of the recording length and STFT parameters. The
marginal distribution P (f |z) represents the frequency basis
vectors or characteristic frequency content of a given source.
The marginal distribution P (t|z) represents the weights or ac-
tivations of each basis vector, and the distribution P (z) rep-
resent the weighting of the latent variable outcomes.

2.2. Parameter Estimation

To fit our probabilistic model to data, we use an expectation-
maximization (EM) algorithm to find maximum-likelihood
estimates of the model parameters of P (f |z), P (t|z), and
P (z). The resulting EM algorithm consists of an iterative
two-stage optimization procedure. In the E step, the posterior
distribution is computed using the model parameters

P (z|f, t) = P (z)P (f |z)P (t|z)∑
z′ P (z′)P (f |z′)P (t|z′)

. (2)

In the M step, this result is used to update the maximum-
likelihood estimates of the model parameters,

P (f |z) =

∑
t X(f,t)Q(z|f, t)∑

f ′
∑

t′ X(f ′ ,t′ )Q(z|f ′ , t′)
, (3)

P (t|z) =

∑
f X(f,t)Q(z|f, t)∑

f ′
∑

t′ X(f ′ ,t′ )Q(z|f ′ , t′)
, (4)

P (z) =

∑
f

∑
t X(f,t)Q(z|f, t)∑

z′
∑

f ′
∑

t′ X(f ′ ,t′ )Q(z′ |f ′ , t′)
, (5)

where we define the distribution Q(z|f, t) = P (z|f, t),
which, in this case, is the posterior distribution. X(f,t) refers
to time-frequency bin f ,t of the spectrogram data. Both steps
are repeated in secession until convergence.

2.3. Supervised and Semi-Supervised Separation

We use this model to perform supervised source separation
[8] as follows:
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Fig. 3. A 2-simplex of normalized three-frequency spectra
of two sources. The convex hulls and basis vectors of each
source are shown, along with the mixture convex hull. The
bottom-left, top-middle, and bottom-right corners of the sim-
plex represent low, middle, and high frequencies respectively.

1. For each source s ∈ 1, ..., Ns in a mixture, obtain a
spectrogram of isolated training data of that source, and
learn the PLCA model parameters as shown above. Re-
tain the learned basis vectors Ps(f |z) of each source
and discard the other model parameters.

2. Combine the frequency basis vectors of each source
Ps(f |z) to form a larger collection of basis vectors
by taking the union of each source basis P (f |z) =

{
⋃Ns

s=1 Ps(f |z)}, assuming each value of z is unique
and Nf for each source is the same.

3. Estimate the contribution of each source in the mixture
spectrogram data X by fixing P (f |z), and computing
the unknown distributions P (t|z) and P (z).

4. Compute the posterior distribution P (z|f, t) (see (2)
below) and P (s|f, t) =

∑
z∈Zs

P (z|f, t), which
serves as a soft mask that corresponds to the estimated
proportion of each source at each time-frequency bin.

5. For each s, element-wise multiply the soft mask
P (s|f, t) with the mixture spectrogram data X and
mixture phase, resulting in X̂s.

6. Convert each X̂s to a time domain signal via the inverse
STFT, completing the separation process.

This process is illustrated in Fig. 3, where we display
3-dimensional normalized spectrogram data (i.e. spec-
tra with low, middle, and high frequencies) of two sound
sources using a standard 2-simplex diagram. We addition-
ally show three learned basis vectors and the convex hulls
for each source. The convex hull of a source represents
the general geometrical region within the simplex of the
given source’s normalized spectra and is defined by the set
H = {

∑
z∈Zs

θzP (f |z) | θz ≥ 0,
∑

z∈Zs
θz = 1}, where

Zs is the set of values of z for source s.
When one or more sources lack isolated training data,

semi-supervised separation must be used in place of super-
vised separation. The process is largely similar, except that
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the basis vectors (or elements of P (f |z)) of sources with no
training data are estimated from the mixture signal along with
P (t|z) and P (z).

2.4. Posterior Regularization

Posterior regularization (PR) [10, 11, 12], initially proposed
by Graça et al. is a flexible method of incorporating rich, typ-
ically data-dependent, constraints into latent variable models
using EM algorithms. Prior regularization (maximum a pos-
teriori estimation using a prior distribution), constrains the
space of model parameters in the maximization step of the
EM algorithm. In contrast, posterior regularization directly
constrains the posterior distribution in the expectation step.
This is done by first computing the posterior distribution
P (z|f, t) via (2), and then finding a distribution Q(z|f, t)
that best fits the posterior, given constraints. In doing so,
the method facilitates constraints that would otherwise be
difficult to encode using standard priors.

We use PR to constrain the posterior distribution P (z|f, t)
as a function of the time-frequency painting annotations. We
do this by considering the real-valued annotations, stored as
a set of matrices Λs ∈ RNf×Nt , ∀ s = 1, ..., Ns, as penalty
weights that discourage one source or another from explain-
ing the observed spectrogram data for each time-frequency
point. The annotation color and opacity indicate the source
and strength of the penalty weights (initialized to all zeros).
In this way, a user can independently control how each source
contributes to a mixture recording at each time-frequency
point, which is not possible using standard priors.

The penalties are incorporated via linear grouping con-
straints into the E step. This leads us to minimize the
Kullback-Leibler divergence between the posterior and a
free distribution Q [13], given the linear constraints, resulting
in

argmin
q

− qT lnp+qT lnq+qT λ

subject to qT 1 = 1, q � 0,
(6)

for each value of f and t in the posterior (in standard EM,
the optimization does not include the penalty qT λ [13]).
p ∈ RNz is the corresponding vector of posterior proba-
bility values for a given time-frequency point, q ∈ RNz

is the corresponding vector of Q(z|f, t), T is a matrix trans-
pose, � is element-wise greater than or equal to, and 1 is a
column vector of ones. The weight vector λ ∈ RNz is
then constructed as λ(z) = Λs

(f,t), ∀s = 1, ..., Ns,∀z ∈
Zs. When two sources are separated, for example, and one
source is assigned two basis vectors and the other with three,
λ = [α, α, β, β, β], with α = Λs1

(f,t) and β = Λs2
(f,t) for a

particular time-frequency point. When the annotations are all
zero, the constraints have no effect, and the process reduces
to standard PLCA described above.

When we solve (6) for each time-frequency point and re-
arrange terms, we arrive at a new E step update,

Q(z|f, t) =
P (z)P (f |z)P (t|z)Λ̃(f,t,z)∑

z′ P (z′)P (f |z′)P (t|z′)Λ̃(f,t,z′ )

, (7)
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Fig. 4. A 2 simplex diagram illustrating the reconstructions
of the mixture and individual sources when using supervised
separation. In both cases, the mixture is well reconstructed.
However, the reconstruction error of the individual sources
are noticeably higher using standard PLCA (left) compared
to the proposed refinement method (right).
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Fig. 5. A 2-simplex diagram illustrating semi-supervised sep-
aration. The basis vectors of the first source are learned in
a supervised manner, while the basis vectors of the second
source are learned via semi-supervised learning. The pro-
posed method (right) results in better estimates of the second
source basis vectors compared to standard PLCA (left).

where Λ̃ = exp{−Λ}, exp{} is an element-wise exponen-
tial function, and Λ ∈ RNf×Nt×Nz represents the entire set
of real-valued painting annotations. In this case, Λ is indexed
by f , t, and z (instead of f , t, and s) for convenience, know-
ing which values of z correspond to each source s. Equa-
tion (2) and the definition of Q(z|f, t) from before are then
replaced with equation (7), resulting in an updated posterior-
regularized EM algorithm.

We show the benefit of PR in Fig. 4 for a simulated su-
pervised separation experiment. In this case, we learn basis
vectors for two sources and then separate an unknown mixture
of the two. On the left, we show a single mixture point and the
original source points used to create the mixture, along with
the separation estimates of the individual sources using stan-
dard PLCA. On the right, we apply posterior regularization to
refine the procedure, resulting in better separation estimates
of the original unmixed sources.

We further depict the benefit of PR in Fig. 5 for the case
of semi-supervised separation. In this case, we learn the ba-
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EXAMPLE IDEAL SUPERVISED SEMI-SUPERVISED

CELL 30.7 29.2 / 27.6 28.4 / 06.5
DRUM 14.8 09.7 / 08.5 07.7 / 03.9

COUGH 15.8 14.0 / 12.5 12.0 / 10.5
PIANO 26.1 26.0 / 21.6 14.9 / 08.4
SIREN 27.8 23.8 / 18.9 21.0 / 19.9

Table 1. SDR (in dB) for supervised and semi-supervised
separation with/without refinement vs. ideal mask results.

sis vectors from one source using supervised learning and the
basis vectors of another source using semi-supervised learn-
ing. When we apply standard PLCA, the basis vectors from
the second source do not accurately represent its true distri-
bution as shown on the left. When we apply posterior regu-
larized PLCA, the basis vectors for the second source more
accurately outline its true distribution as shown on the right,
resulting in better separation estimates.

3. EVALUATION

To test the proposed method, we developed a prototype user-
interface and used it to separate five example mixture sounds
using both supervised and semi-supervised separation over
the course of five minutes per task. The mixture sounds were
artificially mixed at 0dB levels and include: ambulance siren
+ speech, cell phone + speech, drum + bass loop, orchestra +
coughing, and piano chords + incorrect note.

The separation estimates are compared to standard PLCA
via the source-to-distortion ratio (SDR) metric [14]. The
SDR metric considers both the suppression of the unwanted
sources and added artifacts introduced by the separation algo-
rithm. We also compare both results to an ideal masking filter,
generated by using the original unmixed source recordings to
compute the source probabilities P (s|f, t).

Table 1 shows the SDR results for supervised separation,
semi-supervised separation, and ideal mask results using
100 basis vectors per source. For supervised separation, the
original unmixed tracks were used for training. For semi-
supervised separation, we used a portion of the mixture data
in which only one source was present as the training data for
that source. In all cases, the refinement procedure increased
the SDR for both supervised and semi-supervised separation
and, in certain cases, approached the quality of the ideal
mask. These results were insensitive to varying the number
of basis vectors unlike standard PLCA [8].

The cell phone example, using semi-supervised separa-
tion, is illustrated in Fig. 6. In this case, the proposed method
significantly outperforms standard PLCA with minimal user
interaction (only a single harmonic of a single ring is anno-
tated). For sound examples and demonstration videos, please
see https://ccrma.stanford.edu/˜njb/research/iss/.

Fig. 6. (First Row) A mixture spectrogram of speech +
cell phone. (Second Row) Initial separated speech (left) and
cell phone (right) after semi-supervised PLCA. (Third Row)
Painting annotation overlaid on the incorrectly separated re-
gions. Note: only a single harmonic of a single ring is roughly
annotated. (Bottom) Refined separated speech and cell phone.

4. RELATED WORK

There are a few related works that leverage user-guided infor-
mation to improve the source separation process. In [15], a
user is tasked to sing or hum a desired source signal to guide
what source should be removed from the mixture. The guide
signal is then used to inform PLCA using prior probabilities.
In [16], a user is tasked to select the fundamental frequency
of a source. The annotations are then used to inform a source-
filter NMF model. In [17], binary time-frequency annotations
are used to select patches of one source or another to inform
NMF with the intention of training a completely automatic
user-free system. While similar, these works use both dif-
ferent user-input and different algorithms. More specifically,
they do not allow real-valued, time-frequency constraints to
guide the separation process (enabled by PR) or provide a
feedback mechanism to iteratively improve results, which we
believe are the fundamental advantages of this work.

5. CONCLUSIONS

We have presented an interactive refinement method for su-
pervised and semi-supervised single-channel source separa-
tion. The method allows end-users to provide feedback into
the separation process by painting on spectrogram displays of
intermediate output results to refine the separation estimates.
To do so, we extend supervised and semi-supervised proba-
bilistic latent component analysis via posterior regularization.
Initial evaluation shows promising results with minimal user-
interaction and little additional computation cost. For future
work, we hope to extend the technique for the case of separa-
tion without training data and to develop techniques to reduce
computational complexity.
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