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ABSTRACT

In this paper two models for channel estimation in exemplar-based
noise robust speech recognition are proposed. Building on a compo-
sitional model that models noisy speech and a combination of noise
and speech atoms, the first model iteratively estimates a filter to best
compensate the mismatch with the observed noisy speech. The sec-
ond model estimates separate filters for the noise and speech atoms.
We show that both models enable noise-robust ASR even if the chan-
nel characteristics of the noisy speech do not match those of the ex-
emplars in the dictionary. Moreover, the second model, which is
able to estimate separate filters for speech and noise, is shown to be
robust even in the presence of bandwidth-limited sources.

Index Terms— Speech recognition, source separation, matrix
factorization, noise robustness, channel compensation

1. INTRODUCTION

Compositional models for speech, i.e. models which describe the
magnitude spectra of complex sounds as being composed of a purely
additive (no negative components) combinations of spectral atoms,
have proven to be adept at separating the target speech from in-
terfering sounds such as noise [1, 2], other speakers [3, 4], mu-
sic [5, 6, 7] and even reverberation [8]. For noise-robust automatic
speech recognition (ASR), such compositional models really excel
when the atoms also have some temporal extent [9, 10]. Given that
speech is primarily a dynamic process, the importance of modeling
the temporal dynamics is not unexpected and has been observed with
other techniques such as deep belief networks [11] as well.

In this paper, we incorporate a channel estimate into our com-
positional speech model, leading to a comprehensive framework that
copes with both additive and convolutive noise while still being able
to capitalize on the dynamic nature of speech and noise by using long
spectral-temporal atoms. The method can also provide robustness if
the spectral-temporal patches are zeroed out by the channel (band-
width limitation) or were completely masked by noise. The proposed
modifications renders the compositional model better adept at han-
dling the diverse conditions encountered in real-world applications.

In ASR, the most frequently used technique to handle channel
mismatches is cepstral mean subtraction, which operates indepen-
dently from techniques used to cope with the additive noise. In
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multipass systems, adaptation schemes such as (feature space) max-
imum likelihood linear regression in the subsequent stages help to
overcome some of the inaccuracies introduced by not having an in-
tegrated noise model. Predictive schemes such as vector Taylor se-
ries [12] compensation on the other hand, do model the joint effect
that additive and convolutive noise have on the acoustic model. This
allows them to calculate proper model transformations based on a
very compact set of parameters that must be estimated. The inher-
ent complexity of both adaptive and predictive model compensation
however, makes it very difficult for these techniques to exploit the
temporal structure in both speech and noise.

The compositional model proposed in this paper not only has
the built-in capability to leverage both spectral and temporal infor-
mation, it can also estimate both the speech and the noise channel
and can be configured to fill in missing spectral components with-
out requiring multiple recognition passes. The techniques needed
to build a noise-robust system based on the compositional model
have been explored in previous work. In [2], we proposed the use
of speech and noise exemplars as dictionary atoms and showed that
it is possible to directly map the sparse weights of the clean speech
atoms to state posteriors. In a feature enhancement method [9], the
compositional model is used to obtain clean speech and noise esti-
mates which are in turn used to define a Wiener filter. Finally, in the
hybrid approach [13, 14], both schemes are combined. In [15], we
show how these techniques can be successfully applied to create a
noise-robust large vocabulary speech recognition system.

The remainder of this paper is organized as follows. First, the
compositional model without channel components and the different
strategies to employ this model for noise-robust ASR are presented.
Next, the model is extended to include channel components and we
propose adapted decoding. The system is evaluated on the AURORA-
2 database, including a modified testset C which allows us to evalu-
ate the capabilities of the models to fill in missing spectral compo-
nents. Finally, we draw conclusions and lay out future work.

2. BACKGROUND

2.1. Noisy speech

Convolutive noise (i.e., channel mismatch) can be approximated by
point-wise multiplication in spectral domain, and additive noise can
be approximate as the summation of speech and noise magnitude
spectra. In this work, we assume the following linear model for Mel-
magnitude representations of (possibly filtered) speech corrupted
with additive noise:
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Y = LsS + LnN (1)

with Y the noisy speech, S the underlying clean speech and N the
underlying noise — these matrices are of dimension F × T , where
F is the number of Mel bands and T is the number of consecutive
time frames. Ls and Ln represent the Mel-spectral channel filters of
the speech and noise source, respectively. In this paper, we restrict
ourselves to linear transfer functions (no intermodulation), so the
filters are expressed as diagonal matrices of dimension F × F with
the frequency filter coefficients on the diagonal.

2.2. Compositional model for noise-robust ASR

The compositional model for noise-robust ASR is based on repre-
senting the observed noisy speech as a linear combination of speech
and noise atoms. The atoms used for modeling noisy observations
are F × TW magnitude spectrogram segments, with TW the num-
ber of consecutive time frames in an atom. The collection of speech
and noise atoms form a dictionary. This model is also referred to as
Non-negative Matrix Factorization (NMF).

In this work speech and noise atoms are formed by exemplars,
spectrogram segments extracted from a set of training utterances.
For now, we will assume that the speech and noise in the dictionary
are not filtered - e.g., captured by a microphone with a flat response.
Although in our experiments we use TW = 30, in the remainder of
this section we proceed with TW = 1 to simplify the notation. We
refer to [9] for a discussion of the use of TW > 1. Consider the
model

Y ≈ Ψ = Ŝ + N̂ = [As An]

[
Xs

Xn

]
= AX s.t. X ≥ 0 (2)

with the columns of Xs and Xn representing sparse linear combina-
tions of the speech and noise dictionaries As and An, respectively.
The dictionary consists of J = L + K atoms, with L the number
of speech exemplars and K the number of noise exemplars. Accord-
ingly, the speech and noise weights Xs and Xn are of dimensions
L× T and K × T , respectively.

The weights are obtained by minimizing the Kullback-Leibler
(KL) divergence between Y and AX. To promote sparsity in X,
its entries are weighted element-wise by a penalty Λ [9]. The cost
function is minimized by first initializing the activations X to unity,
and then iteratively applying the update rule [9, 16]

X← X⊗
AT Y

Ψ

AT1 + Λ
(3)

with 1 an all-one matrix having dimensions F × T and Λ a matrix
of dimensions J ×T containing the element-wise sparsity penalties.
Both the multiplication ⊗ and division ÷ operate element-wise.

2.3. Noise-robust ASR

Once a noise-robust sparse representation is obtained, several op-
tions exist to do noise-robust ASR. The Sparse Classification (SC)
method [9], associates each frame in the speech dictionary with the
corresponding HMM-state found with a forced Viterbi alignment on
the training data from which the exemplars were drawn. The weights
assigned to the speech exemplars are then used directly to estimate
the HMM-state posterior probabilities.

Alternatively, the compositional model can form the base of a
feature enhancement (FE) scheme. Given the weights Xs, an initial
clean speech estimate can be made: Ŝ = AsXs. The estimate Ŝ can
be improved by Wiener filtering the noisy speech using the following
equation, [4],

S̃ =
Ŝ

Ŝ + N̂
⊗Y (4)

A last option we investigate in this paper is a hybrid combination
of the posteriors estimated by SC and those obtained by applying
a conventional Gaussian Mixture Model (GMM) to the enhanced
features S̃. The posteriors are combined by multiplication using the
method proposed in [13].

3. CHANNEL COMPENSATION

In this section we propose two models to add channel compensation
to our compositional model. The first model estimates a single Mel-
frequency filter which compensates the noisy observation, while the
second method estimates two filters, for the speech and noise part of
the exemplar dictionary, respectively.

3.1. Model one: filtered observation

Under the assumption that Ls = Ln in (1), we can model a channel
mismatch between the speech and noise sources in the dictionary A
and the observed noisy speech Y, as

HoY ≈ AX s.t. X ≥ 0 (5)

with Ho again a diagonal, square filter matrix. We estimate Ho by
minimizing the KL-divergence between HoY and the reconstruction
AX, using the current estimate of X:

Ho = I⊗ exp(
log(Ψ

Y
)YT

YT1
) (6)

with I an F ×F dimensional identity matrix and 1 an all-one matrix
having dimensions T × F . Equation (6) is derived by setting the
gradient of the KL-divergence w.r.t. Ho to zero. We alternate the
update (6) with the update of X in (3). In the case of using atoms
spanning multiple time frames, we average the second term of (6)
over the consecutive time frames within segments.

Because alternatively updating (3) and (6) can result in arbitrary
scale factors, we constrain the filter weights to average to one in each
iteration:

Ho ← Ho
F

|| diag(Ho)||1
(7)

with diag extracting the diagonal elements and || ||1 representing
the L1 norm.

3.2. Model two: filtered dictionary

If Ls 6= Ln in (1), or alternatively, if the channel characteristics of
the speech and noise sources in the dictionary A are not the same,
we can estimate Mel-magnitude filters for both the speech and noise
components of the dictionary:

Y ≈ Ψ2 = Ŝ + N̂ = [HsAs HnAn]X s.t. X ≥ 0 (8)
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Table 1: Accuracy obtained on AURORA-2 testset C as a function of SNR
for baseline methods. The performance on corresponding data from testset A
and B are also shown.

test set C
method clean 5 -5 Avg 20-0

MFCC baseline 99.8 78.2 22.9 83.9

NMF baseline
SC 96.6 87.0 40.3 88.0
FE 99.8 93.8 52.2 94.2

Hybrid 99.8 94.0 51.4 94.0
corresponding data set A+B

MFCC baseline 99.8 78.5 19.7 84.6

NMF baseline
SC 97.5 92.5 61.1 93.1
FE 99.8 94.8 64.6 94.0

Hybrid 99.8 95.8 70.1 96.3

with Hs and Hn diagonal matrices representing the Mel-spectral
filters of the speech and noise source, respectively.

In order to estimate Hs and Hn, we alternate update rule (3)
with the following two update rules

Hs ←Hs ⊗
Y
Ψ2

(AsXs)
T

1 (AsXs)
T

(9)

Hn ←Hn ⊗
Y
Ψ2

(AnXn)
T

1 (AnXn)
T

(10)

with 1 is an all-one matrix having dimensions T ×F . The filters Hs

and Hn are initialized as the identity matrix. As in Section 3.1, the
filter updates are followed by a normalization (cf. (7)).

In practice, we obtain better results if we normalize the rows of
the filtered dictionary [HsAs HnAn] to equal Euclidean norm, nor-
malize the rows of Y by the same factor, and finally normalize the
columns of the resulting dictionary to unity Euclidean norm after up-
dating the filters. These are the same normalizations that are carried
out in the baseline framework prior to optimization [9, 13].

3.3. Feature enhancement

When using the proposed models, the SC method described in Sec-
tion 2.3 can be used without any change as it operates directly on
the sparse representations Xs. The FE method, however, needs to be
modified to account for the estimated filters. Under the assumption
that the filter characteristics of the acoustic model used to recognize
the enhanced features matches the speech in the exemplar dictionary,
a general formulation for the use of dictionary or observation filter-
ing is

S̃ = H−1
s

HsAsXs

[HsAs HnAn]X
⊗HoY =

Ŝ

Ŝ + N̂
⊗HoY (11)

with either Ho or Hs and Hn the identity matrix when not estimated.

4. EXPERIMENTAL SETUP

4.1. Noisy speech material

We used the AURORA-2 database to evaluate our approach.
AURORA-2 provides three testsets, described in detail in [17]. In

Table 2: Accuracy obtained on AURORA-2 testset C as a function of SNR
with the proposed methods.

SNR
method clean 5 -5 Avg 20-0

FOBS oracle
SC 97.3 92.0 59.0 91.8
FE 99.8 94.0 61.6 94.9

Hybrid 99.8 95.7 67.0 95.7

FDICT oracle
SC 97.2 91.7 59.2 91.9
FE 99.8 94.8 61.6 94.9

Hybrid 99.8 95.4 66.1 95.5

FOBS estimated
SC 98.0 93.0 55.9 93.5
FE 99.8 95.1 62.1 95.5

Hybrid 99.8 96.6 67.5 96.1

FDICT estimated
SC 98.5 93.4 58.9 93.6
FE 99.8 93.1 53.1 93.8

Hybrid 99.8 96.1 62.8 95.7

short, testsets A and B contain four different kinds of noise, while
testset C (a subset of both A&B) is filtered with a different channel
characteristic than the A & B testsets and the training sets. AURORA-
2 provides a clean and a multi-condition training set: we use the
clean training set to train the acoustic models of the HMM-based
speech recognizer and we use the speech and noise samples under-
lying the multi-condition training set to populate our clean and noise
dictionaries, respectively.

Our evaluation focuses on testset C. We use the same random,
representative subset of 10% of the utterances (i.e. 200 utterances
per SNR level) as used in [18, 13]. Additionally, we created a dataset
with a bandwidth limiting filtering in the clean speech component of
the testset C noisy speech by filtering the clean speech using a 10-
point Butterworth low-pass filter with a cutoff frequency of 1.6Khz
before adding the noise. In practice, this results in filtering away the
top-5 Mel frequency bands of the clean speech, a scenario similar
to some of the material in the AURORA-4 database. For all testsets,
the results of the four noise types are averaged and we display the
results for clean speech, 5 dB,−5 dB, and the average over the 20-0
dB range.

4.2. Speech recognition

The acoustic feature vectors used in the compositional model con-
sisted of Mel frequency magnitude spectrograms, spanning F = 23
bands with a frame length of 25 ms and a frame shift of 10 ms. The
dictionary consists of L = 10000 speech exemplars and K = 4000
noise exemplars, each spanning TW = 30 frames. Digits were de-
scribed by 16 HMM states with an additional 3-state silence word,
resulting in a 179-dimensional state-space. Each frame in each ex-
emplar was annotated using an HMM-state label obtained through
forced alignment with the canonical transcription obtained with the
GMM-based recognizer also employed for use with FE.

FE and hybrid recognition experiments employed the GMM-
based recognizer operating on MFCC features, derived from the
Mel-spectral features used in the compositional model. Here, we
used 13 static MFCC features along with their delta and delta-
delta time derivatives resulting in a 39 dimensional feature vector.
The MFCC features were mean and variance normalized on a per-
utterance basis. The acoustic model consisted of 64 Gaussians with
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Table 3: Accuracy obtained on AURORA-2 bandwidth-limited version of
testset C as a function of SNR.

SNR
method clean 5 -5 Avg 20-0

MFCC baseline 95.2 56.2 16.8 66.0

NMF
SC 59.5 74.5 30.2 73.2
FE 92.5 77.0 37.9 80.2

Hybrid 83.1 79.6 41.5 80.3

FOBS

SC 88.9 79.3 46.5 80.3
FE 94.0 78.8 49.0 84.2

Hybrid 97.6 81.9 54.0 85.1

FDICT

SC 93.8 88.0 49.5 88.8
FE 95.1 84.1 43.9 87.4

Hybrid 98.1 90.2 55.3 91.2

diagonal covariance per HMM-state. In the hybrid system, the GMM
probabilities (based on the FE stream) were raised to the power 0.33
prior to combining with the SC probability estimates as described in
[13].

4.3. Implementation

The SC and FE speech decoding systems were implemented in MAT-
LAB; we refer the reader to [9, 18, 13] for further implementation
details. For optimization, we used 600 iterations of (3). We used
a ‘burnin’ period of 5 iterations in which we only use update rule
(3). Since the filters converge much faster than (3), we stop updating
the filters after a ‘burnout’ period of 200 iterations. Other settings
were taken from the best performing system in [13]: a speech and
noise sparsity of 1.5 and 1, respectively, and the use of two addi-
tional noise dictionaries: an artificial noise dictionary [19] and one
based on noise sniffing [18]. Note that the noise sniffing dictionary
is based on Y, and as such should not be filtered with Hn.

5. EXPERIMENTS AND RESULTS

In Table 1, we display the performance of the baseline MFCC rec-
ognizer operating directly on the noisy speech, as well as the previ-
ously proposed exemplar-based NMF framework described in Sec-
tion 2. We can observe that for the MFCC baseline recognizer the
channel characteristic has little impact on the recognition accuracy.
However, for the exemplar-based methods, referred to as “NMF”,
the performance decreases substantially at lower SNRs. The fact
that the SC method has the largest decrease in accuracy when going
from matched to mismatched channel characteristics, from 61.1% to
40.3% at SNR -5 dB, shows that in the mismatched condition the
selected exemplars not only are spectrally dissimilar, but also asso-
ciated with incorrect acoustic states. Even though on testset A+B the
hybrid recognition achieves the best results, on testset C the perfor-
mance is drops below that of FE due to the low accuracy of SC.

In Table 2, we display the testset C performance of the two pro-
posed models namely filtered observations (“FOBS”, (5)) and filtered
dictionaries (“FDICT”, (8)). The top two panels show ‘oracle’ results
in which the observation or dictionary filters are not updated, but are
initialized using the correct filters, i.e, the ratio between the testset
C channel characteristic (MIRS) and the train&testset A/B channel

characteristic (G.712). In the bottom two panels the performance of
the FOBS and FDICT models are shown with estimated filters.

From the oracle results it is clear that both models can com-
pensate most of the channel mismatch introduced in testset C. For
example for SC the accuracy increased from 40.3% at SNR -5 dB to
59.2% for FDICT - only slightly lower than the 61.1% obtained on
the corresponding testset A+B data. With FOBS the estimated filters
achieve similar performance as when using oracle filters, and even
better than oracle performance for SC. This is probably due to the fil-
ter compensating not only for the channel characteristic mismatch,
but also for the train-testing mismatch. When using the FDICT model
the oracle performance is not achieved due to a lower FE perfor-
mance. This might be due to the fact that now two filters need to be
estimated rather than one. Still, with both models the estimated fil-
ters achieve a substantial increase in noise robustness over the base-
line system.

Finally, Table 3 shows results for the modified testset C contain-
ing the bandwidth-limited speech. It is clear that the missing fre-
quency bands greatly affect the MFCC baseline recognizer even in
the absence of corrupting noise, reducing the accuracy from 99.8%
to 95.2% on clean speech. At lower SNRs, the decrease is even
more pronounced because the zero-out frequency bands get filled
with noise. The NMF baseline is also greatly affected: the clean
speech accuracies drop even below the MFCC baseline. The chan-
nel estimation methods FOBS and FDICT substantially improve the
channel and noise robustness over the NMF baseline. Although both
SC and FE yield lower accuracies on clean speech, the hybrid SC/FE
systems do outperform the MFCC baseline.

Moreover, the FDICT model, which is able to estimate separate
filters for speech and noise performs indeed better than FOBS which
only estimates a single observation filter that cannot fully capture the
different channel characteristics of the underlying clean speech and
noise sources. In fact, inspection of the enhanced features produced
by FE showed that at lower SNRs, the model actually performs band-
width extension: it estimates clean speech estimates of the missing
frequency bands by filtering the noise energy. At high SNRs, this
does not occur due to the multiplicative nature of the Wiener filter
in combination with the lack of energy in the zeroed out frequency
bands. To use the model for bandwidth extension at higher SNRs
we could use the clean speech estimate Ŝ without or in combination
with Wiener filtering.

6. CONCLUSIONS AND FUTURE WORK

In this paper two models for channel estimation in exemplar-based
noise-robust speech recognition were proposed. We showed both
models enable noise-robust ASR even if the channel characteristics
of the noisy speech do not match those of the exemplars in the dictio-
nary. Moreover, the second model, which is able to estimate separate
filters for speech and noise, was shown to be robust if bandwidth-
limited speech is combined with fullband noise.

Future work consist of evaluation on tasks like AURORA-4, a
noisy speech database which is known to exhibit mismatching chan-
nel characteristics. Another topic of future work is joint speech
dereverberation and denoising: Due to use of exemplars spanning
multiple time frames, the proposed models are able to estimate time-
varying filters with minor modifications.
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