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ABSTRACT

In this paper we present a speech presence probability (SPP) estima-

tion algorithm which exploits both temporal and spectral correlations

of speech. To this end, the SPP estimation is formulated as the pos-

terior probability estimation of the states of a two-dimensional (2D)

Hidden Markov Model (HMM). We derive an iterative algorithm to

decode the 2D-HMM which is based on the turbo principle. The ex-

perimental results show that indeed the SPP estimates improve from

iteration to iteration, and further clearly outperform another state-of-

the-art SPP estimation algorithm.

1. INTRODUCTION

The estimation of the SPP for each individual time-frequency (TF)-

slot in the short-time Fourier transform (STFT) domain is a im-

portant part of many speech processing systems. For instance, the

widespread speech enhancement approaches based on estimation of

the short-time spectral amplitude of the clean speech signal crucially

depend on an SPP estimator [1]. However, a reliable SPP estimator

is difficult to obtain in a noisy scenario.

It is well known that speech signals have characteristic tempo-

ral and spectral correlations in the STFT domain. Usually, this fact

is exploited by smoothing the estimated characteristics, such as the

SPP estimations themselves, the a priori SNR, or even the gain factor

of individual TF bins across time, frequency, or both, e.g., [1–5]. Re-

cently, we proposed a more principled approach to exploiting tempo-

ral correlations [6]: Rather than smoothing the estimates with heuris-

tically chosen filter parameters in a postprocessing step, the corre-

lations are directly employed in the estimation of the SPP using a

one-dimensional (1D)-HMM for each frequency bin independently.

While this approach was successful in exploiting temporal corre-

lations, an extension to also exploit the spectral correlations asks for

the use of 2D-HMMs to capture dependencies over the axes of time

and frequency. Unfortunately, exact inference in large 2D-HMMs

is computationally infeasible. Even approximative algorithms de-

veloped in other fields such as the Markov Chain Monte Carlo ap-

proach, incorporate very large computational complexity, e.g., [7].

In the field of telecommunications, the turbo principle has been

developed as a powerful means to decode turbo codes [8]. It consists

of an iterative decoding process where two conventional decoders

exchange soft bit information via an interleaver/deinterleaver pair.

In the construction of the turbo decoding scheme much attention is

payed to prevent the multiple use of the same information; there-

fore, the so called extrinsic information is identified and exchanged

between the two decoders.

Borrowing the ideas of turbo decoding an algorithm is derived

here which operates by alternating between horizontal decoding,
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i.e., decoding along the time axis, and vertical decoding, i.e., along

the frequency axis, exploiting temporal correlation in the first and

spectral correlation in the second step. Extrinsic information is

exchanged between the decoders, such that increasingly better es-

timates of the SPP are obtained. The experimental results show

that the proposed decoding algorithm excels with significant per-

formance improvements, high convergence speed and complexity

linear in the data set size.

The paper is organized as follows: In Sec. 2 we briefly introduce

the observation model used in SPP estimation. Sec. 3 discusses the

SPP estimation by considering only correlations in time, thus laying

the ground for the extension to the iterative decoding of a 2D-HMM

in Sec. 4. Experimental results will then be given in Sec. 5, before

we draw conclusion in Sec. 6.

2. SPEECH PRESENCE PROBABILITY ESTIMATION

Let us assume a speech signal Sk
m captured by a microphone as noisy

speech signal Y k
m in the STFT domain, where m ∈ {1, . . . ,M}

is the time frame index with the utterance length M and k ∈
{1, . . . ,K} denotes the frequency bin. With Nk

m denoting the

STFT of additive noise we have

Y k
m =

{

Nk
m if Zk

m = 1

Sk
m +Nk

m if Zk
m = 2

. (1)

Here, Zk
m is binary hidden random variables (RV) indicating whether

the TF-slot (m, k) contains noise only (Zk
m = 1) or noisy speech

(Zk
m = 2).

It is a common practice in speech enhancement to equivalently

model the a-posteriori SNR

Xk
m = |Y k

m|
2/λk

m, (2)

where λk
m is the noise variance obtained by a noise tracking algo-

rithm, such as the one in [2]. Assuming zero-mean Gaussian random

signals the probability density function (PDF) of the a-posteriori

SNR Xk
m can be modeled by scaled Chi-squared distributions [3]

p
(

Xk
m|Z

k
m = i; ξi

)

=

(
r

2(1 + ξi)

) r
2
(
Xk

m

) r
2
−1

Γ
(
r
2

) e
−Xk

mr

2(1+ξi) , (3)

where r = 2 is the degrees of freedom, ξ1 = 0 for the noise-only

case, ξ2 is the a-priori SNR. According to [4] the a-priori SNR ξ2
can be set to a fixed value for a given database.

The goal is to infer the SPP given all a-posteriori SNR obser-

vations, i.e. to compute the posteriori probability (PP) γk
m(i) :=

P
(
Zk

m = i|X1:K
1:M

)
, i = 1, 2, for all k and m.

3. SPP ESTIMATION USING 1D-HMM ALONG TIME

In this section we briefly review the decoding, i.e., the computation

of the PP, of 1D-HMMs. However, we will present the equations in a
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slightly different form than is usually done in the literature, e.g., [9].

The reason is to prepare for the extension to the 2D-HMM lattice.

To be able to write the equation in a compact fashion we in-

troduce the following vector and matrix operators: We will write

a := [·]
i;j

to define the element on the i-th row and j-th column of

the matrix a. If j = 1 we will omit it. The binary operator ◦ is the

element-wise product of two vectors, also known as the Hadamard

product. Likewise, the binary operator ⊘ is the element-wise di-

vision and we will write [a]c to raise each element of the vector

a to the power of c. The binary rescaling operator of two column

vectors of the same size, denoted by the symbol ∝, is defined as

a ∝ b := b/(aT
b). If the first operand is a scalar then it will be

expanded to a column vector of the same size as the second vector

operand by repetition. Thus, the operation 1 ∝ b rescales the vector

b so that the sum of all elements is one. Throughout this paper we

consider the rescaling operator to have the lowest precedence of all

operators.

Let us first consider correlations along the time axis only. For

each frequency bin k, the sequence of hidden states along the time

axis is considered to be a first-order Markov chain. If the state vari-

able Zk
m is given, the observation Xk

m is independent of all other

states and all observations at any other TF slot, see the Bayesian

model in Fig. 1(a).

For the sake of simplicity we consider a homogeneous Markov

chain, i.e. the 2×2 horizontal transition (HT)-matrix HT :=
[Ht(j, i)]j;i with entries Ht(j, i) := P

(
Zk

m = i|Zk
m−1 = j

)
is

independent of m and k. Further we assume that the Markov chains

are ergodic and in equilibrium, i.e. the 2×1 column vector of a priori

probabilities (APP) π :=
[
P
(
Zk

m = i
)]

i=1,2
is also independent

of m and k.

Since we ignore spectral correlations the 2×1 vector of PP can

be computed in each frequency bin k independently:

γ
k
m :=

[

P
(

Zk
m = i|Xk

1:M

)]

i=1,2
. (4)

The computation of the PP can be efficiently carried out by employ-

ing the forward-backward algorithm (FBA) [10] for each row k sep-

arately. In the forward step the 2×1 forward prediction vector (FPV)

α
k
m :=

[

p
(

Xk
1:m−1, Z

k
m = i

)/

p
(

Xk
1:m−1

)]

i=1,2
(5)

and in the backward step the 2×1 backward vector (BV)

β
k
m :=

[

p
(

Xk
m+1:M |Z

k
m = i

)/

p
(

Xk
m+1:M

)]

i=1,2
(6)

is computed by combining observation evidence vector (OEV)

o
k
m := π ∝

[

p
(

Xk
m|Z

k
m = i

)]

i=1,2
, (7)

with HT and π using dynamic programming techniques. Using the

introduced matrix operators the FBA can be compactly written as:

α
k
m = 1 ∝ HT

T
(
α

k
m−1 ◦ o

k
m−1

)
, (8)

β
k
m = π ∝ HT

(
β

k
m+1 ◦ o

k
m+1

)
, (9)

γ
k
m = 1 ∝ π

︸︷︷︸

prior

◦ o
k
m

︸︷︷︸

intrinsic

◦ (αk
m ⊘ π) ◦ βk

m
︸ ︷︷ ︸

extrinsic

, (10)

where αk
1 = π and βk

M = [1, 1]T ∀k.

We see from equation (10) that the PP is a product of three terms.

The first term is the state prior distribution. The second term might

be called intrinsic information since it contains the evidence of an

individual observation in the given TF-slot. The third term, is the ex-

trinsic information which takes into account the knowledge gained

from past observations, concentrated in αk
m ⊘ π, and the future ob-

servations, concentrated in βk
m. The distinction of these three terms

is key to understanding of the turbo decoding scheme.

Beside numerical stability the benefit of the used normalization

of ok
m, (αk

m ⊘ π) and βk
m is an easier interpretation of these values

in terms of information gain. If the current observation contains no

information about the state Zk
m then the OEV is ok

m = [1, 1]T and if

no information can be yielded from past or future observations then

the FPV and BV terms are αk
m ⊘ π = [1, 1]T or βk

m = [1, 1]T, re-

spectively. The logarithm to base 2 of these quantities is also known

as the pointwise mutual information. Following this link to informa-

tion theory the denotation of the three terms can be further justified

by taking the expectation of the negative logarithm to the base 2

of equation (10) on both sides w.r.t. Zk
m and Xk

1:M . Recalling the

definition of entropy H(u) := E [− log2(p (u))] and mutual infor-

mation I(u; v) := E [log2(p (u, v) /(p (u) p (v)))] we have

H(Zk
m|X

k
1:M ) =

prior
︷ ︸︸ ︷

H(Zk
m)−

intrinsic
︷ ︸︸ ︷

I(Zk
m;Xk

m)−

I(Zk
m;Xk

1:m−1)− I(Zk
m;Xk

m+1:M )
︸ ︷︷ ︸

extrinsic

+R(Xk
1:M ). (11)

Thus, the uncertainty about hidden stateZk
m after observing Xk

1:M is

equal to the uncertainty before the observation minus the information

of the current observation and the information obtained from past

and future observations. The last term R(Xk
1:M ) in equation (11)

bears the redundant information in the observations.
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(a) 1D-HMM along time
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(b) Full dependencies of 2D-HMM
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(d) Horizontal pass in k-th row

Fig. 1. Bayesian model depicting statistical dependencies.

4. ITERATIVE DECODING OF 2D HMM

Now we make the extension from 1D-HMMs to a 2D-HMM by

regarding temporal and spectral correlations. For convenience we

write Z1:K
m to denote the m-th column and Zk

1:M to denote the k-

th row of the hidden RV, respectively. Likewise, we use the same

notation for the lattice of observation vectors X1:K
1:M . Now we con-

sider Zk
m as a 2D random Markov process as is depicted in Fig. 1(b).

Again, a homogeneous and ergodic Markov process in equilibrium is

assumed. Thus, the APP vector is π :=
[
P
(
Zk

m = i
)]

i=1,2
∀m, k.

The 2D-HMM requires the specification of a 3D transition matrix

with 3Dt(j1, j2, i) := P (Zk
m = i|Zk

m−1 = j1, Z
k−1
m = j2). Similar

to [11] and [12] we reduce the complexity of the model by assuming

that this transition matrix is separable, i.e. it can be decomposed
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into a product of horizontal transitions Ht(j, i) and vertical transi-

tions Vt(j, i) := P
(
Zk

m = i|Zk−1
m = j

)
. Hence, we have

3Dt(j1, j2, i) = Ht(j1, i)Vt(j2, i)/
∑S

ĩ=1
Ht(j1, ĩ)Vt(j2, ĩ). (12)

The vertical transition probabilities are collected in a vertical transi-

tion (VT)-matrix VT with elements [Vt(j, i)]j;i, similar to HT. Note,

that while temporal correlations are stored in the HT-matrix, spectral

correlations are stored in VT-matrix.

Decoding a large 2D-HMM, i.e., computing the PP vector

γk
m :=

[
P
(
Zk

m = i|X1:K
1:M

)]

i=1,2
is computationally infeasible and

no efficient algorithms are known for an exact solution. The reason

for the difficulties compared to an 1D-HMM is that no single state

exists that d-separates the graphical model into independent sets of

vertices , i.e. the Bayesian model in Fig. 1(b) is not a poly-tree [13].

To derive an approximate algorithm we propose to split the de-

coding into horizontal and vertical processing steps and let the steps

exchange information by inducing additional information on each

other.
Let us derive the vertical processing (VP)-step where we decode

the 2D-HMM column-by-column, but also account for information
in the rows. For the m-th column we ignore the vertical dependen-
cies in all other columns. Therefore, the VP-steps are independent
from each other. Fig. 1(c) depicts the statistical dependencies of VP-
step in m-th column. Reflecting the notation of the 1D-HMM we
first introduce the following 2×1 column vectors

Vγ
k
m :=

[

P

(

Zk
m = i|X1:K

1:M

)]

i=1,2
, (13)

Vα
k
m :=

[

p

(

X
1:k−1
1:M

, Zk
m = i

)/

p

(

X
1:k−1
1:M

)]

i=1,2
, (14)

Vβ
k
m :=

[

p

(

X
k+1:K
1:M

|Zk
m = i

)/

p

(

X
k+1:K
1:M

)]

i=1,2
, (15)

Vu
k
m :=





p
(

Xk
1:m−1|Z

k
m = i

)

p

(

Xk
m+1:M |Zk

m = i

)

p

(

Xk
1:m−1

)

p

(

Xk
m+1:M

)





i=1,2

, (16)

where Vγ
k
m is the vertical PP, Vα

k
m is the vertical FPV, Vβ

k
m is the

vertical BV and Vu
k
m is the vertical junction vector (JV). Now, given

the simplified model in Fig. 1(c) all vertices Zk
m of an active col-

umn d-separate the graphical model into five sets corresponding to

states and observations above the current state {Z1:k−1
1:M , X1:k−1

1:M },

below the current state {Zk+1:K
1:M , Xk+1:K

1:M }, left of the current state

{Zk
1:m−1, X

k
1:m−1}, right of the current state {Zk

m+1:M , Xk
m+1:M}

and finally {Xk
m}. Hence, the joint PDF can factorized as

p
(

Zk
m, X1:K

1:M

)

= P
(

Zk
m

)

p
(

X1:k−1
1:M |Zk

m

)

p
(

Xk+1:K
1:M |Zk

m

)

·

p
(

Xk
1:m−1|Z

k
m

)

p
(

Xk
m+1:M |Z

k
m

)

p
(

Xk
m|Z

k
m

)

. (17)

By using this property the vertical FPV and vertical BV can be re-

cursively computed by a slightly modified version of the FBA:

Vα
k
m = 1 ∝ VT

T
(

Vα
k−1
m ◦ ok−1

m ◦ Vu
k−1
m

)

, (18)

Vβ
k
m = π ∝ VT

(

Vβ
k+1

m ◦ ok+1
m ◦ Vu

k+1
m

)

, (19)

where Vα
1
m = π and Vβ

K
m = [1, 1]T.

Note, that the JV Vu
k
m is equal to the extrinsic factor in equation

(10) of the k-th 1D-HMM in horizontal direction:

Vu
k
m = (αk

m ⊘ π) ◦ βk
m. (20)

As already implied in (11) the JV consequently keeps track of all in-

formation from past and future observations of each individual fre-

quency row. It is easy to verify that if there is no information in the

temporal chains corresponding to Vu
k
m = [1, 1]T then the modified

FBA in (18) and (19) is equal to the ordinary FBA along the spectral

dependencies.

After applying the modified FBA the PP of the m-th row Hγ
k
m

can be obtained by

Vγ
k
m = 1 ∝ π

︸︷︷︸

prior

◦ok
m ◦ Vu

k
m

︸ ︷︷ ︸

intrinsic

◦ (Vα
k
m ⊘ π) ◦ Vβ

k
m

︸ ︷︷ ︸

extrinsic

, (21)

which is already suggested by the factorization in (17).

The JV Vu
k
m can be viewed as an additional independent obser-

vation evidence vector. Thus, it must be considered as an intrinsic

factor in the PP formula (21). The prior and the extrinsic terms are

just as in equation (10).

Since the 2D-HMM is symmetric a similar set of equations can

be derived for a horizontal processing (HP) ignoring all other hor-

izontal dependencies except for the considered row by substituting

the indices in formulas of VP, see Fig. 1(d). Analog to (13) - (16) we

define the horizontal FPV Hα
k
m, the horizontal BV Hβ

k
m, the hori-

zontal JV Hu
k
m and the horizontal PP Hγ

k
m. The modified FBA for

the horizontal processing is given by:

Hα
k
m = 1 ∝ HT

T
(

Hα
k
m−1 ◦ o

k
m−1 ◦ Hu

k
m−1

)

, (22)

Hβ
k
m = π ∝ HT

(

Hβ
k
m+1 ◦ o

k
m+1 ◦ Hu

k
m+1

)

, (23)

Hγ
k
m = 1 ∝ π

︸︷︷︸

prior

◦ok
m ◦ Hu

k
m

︸ ︷︷ ︸

intrinsic

◦ (Hα
k
m ⊘ π) ◦ Hβ

k
m

︸ ︷︷ ︸

extrinsic

, (24)

where Hα
k
1 = π and Hβ

k
M = [1, 1]T.

The key to improve the modified FBA are the JVs Vu
k
m and

Hu
k
m. Due to the approximation in the simplified model in Fig. 1(c)

and 1(d) they are computed by ignoring the other horizontal or ver-

tical dependencies; therefore, it is apparent that they are suboptimal.

The core of the proposed algorithm is to use the extrinsic term of the

previous VP-step as the JV Vu
k
m in the HP-step:

Hu
k
m ← (Vα

k
m ⊘ π) ◦ Vβ

k
m. (25)

Subsequently, the extrinsic factor of the HP-step is used as the aug-

mented JV Hu
k
m to rerun the VP-step:

Vu
k
m ← (Hα

k
m ⊘ π) ◦ Hβ

k
m. (26)

After that we start over again and thus arrive at an iterative decoding

scheme.

The reason for forwarding the extrinsic factor, rather than the PP,

to the next processing step is to prevent the reuse of information in

the next iteration. Suppose that we forwarded the PP instead of the

extrinsic factor, as proposed in [12]. By plugging the equations (24)

and (21) into each other it is easy to verify that the hypothetical final

PP ⋆γ
k
m has the form

⋆γ
k
m = 1 ∝

(

[π]2C ◦ [ok
m]2C ◦ · · ·

)

, (27)

where we omit the complicated extrinsic terms and where C is the

number of full vertical and horizontal processing cycles. From (27)

it is apparent that forwarding the PP into the next iteration may lead

to faster convergence, but also to biased results because the prior and

the intrinsic terms are regarded multiple times.

The prevention of information reuse is also the reason for the

requirement that the JVs Vu
k
m and Hu

k
m should be statistically inde-

pendent of the observation evidence. For our application, however,

forwarding the extrinsic factor merely attenuates the reuse of infor-

mation since, compared to the turbo coding, we have no interleaver

between the processing steps. Thus, independence of the observation

evidence can only be guaranteed in the first processing cycle.

The derived iterative decoding algorithm can be reformulated

to be a special case of the sum-product-algorithm, [14, 15], with

a ”right-left-down-up” message passing schedule. To this end it is

hard to prove that the proposed iterative turbo decoding scheme con-

verges to the optimal or stable solution, i.e. that the horizontal and

vertical PPs agree with each other or that the induced JVs Vu
k
m and
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Hu
k
m reach stable states between VP and HP-steps. But we can pro-

vide at least a necessary criterion for the PPs of the two precessing

directions to coincide: The VT and HT matrices must have the same

principal eigenvector π

π Vλ = VT
T
π and π Hλ = HT

T
π, (28)

where Vλ and Hλ are the corresponding eigenvalues. All other

eigenvalues of the positive-definite matrices HT
T and VT

T must be

smaller than Vλ and Hλ, respectively. This condition is essential for

the proposed iterative algorithm since otherwise the 2D-HMM is not

ergodic and has no equilibrium.

The need for this criterion to hold can be easily verified by the

following thought experiment. Suppose that VT
T and HT

T have two

different principal eigenvectors Vπ and Hπ, respectively. Further-

more let all observations contain no information which is equivalent

to o
k
m = [1, 1]T∀m, k. Then the PP of the VP is Vπ and the PP of

the HP is Hπ. Thus, there are no unambiguous solutions.

To define a stopping condition for the iterative decoding one

could measure the changes of the PP after a full HP and VP cycle

using the Kullback-Leibler divergence and stop iterating when no

significant changes have occurred. However, in practice we observe

that after three or four cycles the PP is in steady state. Therefore, we

recommend a fixed number of cycles C for SPP estimation.

Taken all together the proposed method is summarized in the

Algorithm 1 box.

Algorithm 1 Iterative turbo decoding of 2D-HMM

• Set Hu
k
m ← [1, 1]T∀m, k.

for c = 1 to C do

• HP-step given in equation (22) and (23).

• Set Vu
k
m ← (Hα

k
m ⊘ π) ◦ Hβ

k
m.

• VP-step given in equation (18) and (19).

• Set Hu
k
m ← (Vα

k
m ⊘ π) ◦ Vβ

k
m.

end for

• Set final SPP to γk
m ← Vγ

k
m using equation (21).

5. EXPERIMENTS

For the experiments we considered 40 clean speech utterances (20

male, 20 female) taken from the TIMIT database sampled at 16 kHz.

Four different noise types (white, pink, babble, volvo) taken from

the NOISEX-92 database were added to the speech signals at five

different SNR levels (0dB, 5dB, 10dB) to obtain the noisy speech

signals. To remove anomalies around 0Hz, especially in the ’volvo’-

noise file, we preprocessed all signals with an 80Hz - 7.8 kHz IIR

band pass filter. The signals are converted into the STFT-domain

using a 1024-point Hann window with 512 samples frame shift. We

used our own implementation of the minimum statistics based noise

tracker to estimate the noise variance λk
m.

To evaluate the performance the following procedure is applied:

The estimated SPPs are quantized towards a speech presence deci-

sion mask γ̃k
m using a threshold δ where δ = 0.5 is equivalent to a

maximum a-posteriori (MAP) decision:

γ̃k
m =

{

1 if P
(
Zk

m = 2|X1:K
1:M

)
> δ

0 else.
(29)

Then, the detection rate (DR) and the false alarm rate (FAR), aver-

aged over all TF-slots and all noise types and SNR conditions, are

computed. The ground-truth speech presence reference masks for

DR/FAR computation are created by marking all TF-slots as ”speech

present”, where its energy belongs to the 99.9 percent quantile of the

total energy of a given utterance in each frequency bin. To obtain a

receiver operating characteristic (ROC) curve the decision threshold

δ is sweeped through the interval [0, 1]. ROC curves of the proposed

algorithm for different HP and VP iteration cycles C are computed,

where the 0th cycle corresponds to a SPP detector ignoring all de-

pendencies, i.e. the states Zk
m are assumed to be independent and

identically distributed (i.i.d.). We used the SPP estimator according

to Gerkmann et al. [4] with non-causal local smoothing window for

reference. In Fig. 2 the ROC curves are depicted.
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Fig. 2. ROC of proposed approach.

From Fig. 2 it can be noticed that the performance gain from the

0th cycle to the 1st cycle is huge. Compared to the local smoothing

in [4] our algorithm exhibits a significantly better performance even

after just one cyle. We observe moderate gains in the 2nd cycle and

no significant changes afterwards. We can thus conclude that the

algorithm converges quickly.

In our experiments we found out that the choice of the parameter

ξ2 in the observation model (3) is critical and must be tuned by hand

towards relatively low values (ξ2 = 4dB). We conjecture that a high

value of the a-priori SNR leads to high confidence in the observation

evidences. Consequently, the contributions of the neighboring states

are too weak, and the modified FBA will never revise its decision

and favor an alternative hypothesis.

6. CONCLUSIONS

In this paper we employed a 2D-HMM to capture temporal and

spectral correlations in the time-frequency domain for an improved

speech presence probability estimation. We derived a modified FBA

for iterative decoding of 2D-HMMs, which is based on the turbo

principle. The resulting inference algorithm iteratively alternates be-

tween vertical and horizontal processing steps. A key contribution

is to define and isolate the extrinsic information to be exchanged

between horizontal and vertical decoding. We confirmed by experi-

ments that the decoding scheme results in an improved performance

compared to a widely used SPP estimator.

Future work will be devoted to a fixed-lag implementation to

arrive at an SPP decision for every incoming STFT frame after only

a low latency.

7. RELATION TO PRIOR WORK

We presented an novel approach for speech presence probability

estimation exploiting correlations of adjacent time-frequency slots.

Usually, these correlations are exploited by some heuristic smooth-

ing techniques, e.g. [1–5]. The approach proposed here is more rig-

orous. Based on our previous work with one dimensional HMMs

along the time axis, [6], we extend the modeling to 2D-HMMs to

exploit both temporal and spectral correlations in the speech signal.
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