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ABSTRACT

In this work, we study the usefulness of several types of sparsity
penalties in the task of speech separation using supervised and semi-
supervised Nonnegative Matrix Factorization (NMF). We compare
different criteria from the literature to two novel penalty functions
based on Wiener Entropy, in a large-scale evaluation on spontaneous
speech overlaid by realistic domestic noise, as well as music and sta-
tionary environmental noise corpora. The results show that enforcing
the sparsity constraint in the separation phase does not improve the
perceptual quality. In the learning phase however, it yields a better
estimation of the base spectra, especially in the case of supervised
NMF, where the proposed criteria delivered the best results.

Index Terms— Source separation, single-channel speech en-
hancement, noise cancellation

1. INTRODUCTION

Isolating speech from environmental noise remains a challenging
problem, especially in the presence of highly non-stationary noise.
On the other hand, a large variety of applications would benefit from
a robust separation of speech. Among them are the reduction of
acoustic noise in speech communications [1] or hearing aids [2].
Other possible applications comprise the automatic recognition of
words [3], speaker [4] or emotion [5] in speech.

One of the most popular approaches for single-channel source
separation is Nonnegative Matrix Factorization (NMF) [6], which is
based on a decomposition of the spectrogram of the input mixture into
a nonnegative combination of several spectral bases. This method
has already been successfully applied to speech separation [1, 7,
8]. However, in the standard NMF method, the estimation of the
dictionary of spectral bases often suffers from some inaccuracies and
results in components representing several sources at the same time.
Hence, several modifications of the standard NMF method have been
proposed in order to limit this problem by integrating some structural
constraints in the decomposition [9, 10, 11, 12].

Among the most widely used constraints is the activation sparsity
property [13], which relates to the fact that the proportion of non-
zero component activations (or, more generally, of non-negligible
values) in the decomposition is very small. Several criteria have been
proposed for enforcing sparsity [14, 15, 16]. However, to the authors’
knowledge, there has not been any study on the relative advantages
of these criteria. In the present paper, we compare the usefulness
of several sparsity penalty functions from the literature on the task
of speech separation using supervised and semi-supervised NMF.
Besides, we propose the use of two novel criteria based on the Wiener
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entropy function, which significantly outperform the other method in
the case of supervised NMF.

After presenting the NMF separation methods in Section 2, we
detail the considered sparsity criteria in Section 3. Section 4 describes
the experiments conducted, before some conclusions are drawn and
the relation to prior work is discussed.

2. SPEECH SEPARATION WITH NMF

2.1. Nonnegative Matrix Factorization

Given a matrix of nonnegative data V ∈ Rm×n
+ , NMF aims at finding

the two nonnegative matrices, W ∈ Rm×r
+ and H ∈ Rr×n

+ , which
minimize the error D(V,WH), where D is some divergence mea-
sure. In our audio source separation application, V is the original
magnitude spectrogram. The columns of W then represent charac-
teristic spectra of the recording and H contains the corresponding
‘activation’ values of these basis spectra.

Many algorithms for performing this optimization rely on mul-
tiplicative update rules, in order to maintain the nonnegativity of
the matrices W and H. The cost function used is the generalized
Kullback-Leibler divergence, as it showed good results in previous
experiments [17]. It is defined as:

DKL(X,Y) =
∑
i,j

xi,j log
xi,j
yi,j
− xi,j + yi,j . (1)

The corresponding update rules proposed by [6, 18] are as follows:

W←W ·
V

WH
HT

1HT
(2) H← H ·

WT V
WH

WT1
(3)

where X ·Y and X
Y

denote element-wise operations and 1 is a matrix
of ones.

Assuming that each source is described by a set of columns of
W with corresponding rows in H, separated signals can then be
reconstructed as follows. Let W(k) be the sub-matrix containing
the columns of W corresponding to a source k, and let H(k) be
the according activation sub-matrix. The magnitude spectrogram
of the isolated source V(k) is obtained by the Wiener-like formula:
V(k) = V · W

(k)H(k)

WH
. This spectrogram is then inverted using the

phase of the original mixture and the time-domain signal is obtained
by the overlap-add procedure.

2.2. Adding Activation Sparsity Penalty

The standard NMF method described in the previous subsections
aims to minimize the reconstruction error between the original input
and the decomposition, without taking into account the structure of
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the individual signals. Hence, the estimated bases can capture some
unstructured “building blocks” which can be used to reconstruct
several sources, whereas the goal is to match each basis to a specific
source. Hence, activation sparsity is often enforced by adding a
penalty term to the cost function, which becomes:

C(W,H;V) = DKL(V,WH) + λg(H), (4)

where g(H) is a sparsity criterion and λ is a parameter controlling
the weight of the sparsity penalty. This formulation is called sparsity-
constrained NMF.

For the optimization of this cost function, we adopt the mul-
tiplicative update heuristic used in [15, 14]. In comparison to the
previous subsection, only the update of H (3) is modified. It becomes

H← H ·
WT V

WH
+ λ∇g−(H)

WT1+ λ∇g+(H)
, (5)

where the gradient ∇g(H) of the sparsity criterion computed at H
is written as a subtraction of two element-wise nonnegative terms
∇g(H) = ∇g+(H)−∇g−(H). At each iteration, the columns of
the base matrix W are normalized to have unity Euclidean norm.

2.3. Supervised and Semi-Supervised NMF

In our work, we perform speech separation by using supervised and
semi-supervised NMF. In the supervised case, the spectral base matrix
W is learned a priori from training data. This learning consists
in applying unsupervised NMF to two different training sequences
containing isolated speech and noise respectively. The matrix W is
built by concatenating the two resulting basis matrices. Then, this
matrix is kept constant during the separation phase, and only the
matrix H is updated, according to (3) or (5).

In the semi-supervised case, only the columns of W correspond-
ing to speech are learned and kept fixed for the separation. The
second part of the matrix is randomly initialized and updated on each
recording according to (2).

3. SPARSITY CRITERIA

We consider several different criteria for enforcing the sparsity of the
matrix H, whose characteristics are summed up in Table 1.

3.1. Norm-Based Criteria

The “natural” way of measuring sparsity is to count the number of
non-zero components. However the resulting metric, known as the
L-0 norm, is not differentiable and thus it often leads to intractable
(NP-hard [19]) optimization problems. Thus, most of the sparsity
measures used in the literature approximate this function by other
norms.

The first function, already used in [14], is the sum of the L1-norm
of the columns of H. This boils down to the sum of all the values of
the matrix. This function is denoted by L1.

The second criterion, which we call Row-Normalized L1-norm
(RNL1), was proposed by [15]. It is equal to the sum of the L1-norms
of the rows of H, which are normalized by their Euclidean norm.

The Column-Normalized L1-norm (CNL1), used in [16], is simi-
lar to the previous criterion. However, the columns of H are normal-
ized to have unity Euclidean norm.

For a sparsity criterion whose behavior is closer to the L-0 norm,
we also exploit the L1/2 quasi-norm which is given by the definition
of a p-norm with p = 1

2
. Although this function is not convex,

it is differentiable and can be used with our iterative optimization
approach.

3.2. Wiener Entropy Criteria

The Wiener Entropy, also called spectral flatness, of a set of nonnega-
tive values is the ratio between the geometric mean and the arithmetic
mean of the values. It is always between zero and one, and is maximal
when all the values in the set are equal. Intuitively, a large value of
the Wiener entropy corresponds to a “flat” plot and a small value cor-
responds to a “peaky” plot. Hence, to enforce the sparsity property of
the NMF decomposition, it has to be ensured that the Wiener entropy
of each column is small. Thus we use the sum of the Wiener entropy
of the columns of H as sparsity measure. Note that in practice, a
small positive number is added to the values of H, in order to ensure
that the penalty term is positive and that sparsity is enforced even
when one component is equal to zero.

The value of the Wiener entropy is scale-independent, since it is
the ratio of two means. However, the Kullback-Leibler divergence
used as reconstruction error is dependent on the scale and for a
nonnegative real number α, we have

DKL(αV, αWH) = αDKL(V,WH). (6)

Thus, in order to make the relative orders of magnitude of the sparsity
term and the reconstruction error approximately constant, one can
weight the Wiener entropies of the columns of H by their arithmetic
mean. This reduces to using the geometric mean as sparsity criterion.

4. EXPERIMENTS

4.1. Evaluation Databases

The methods are evaluated on mixtures of speech and noise from
publicly available corpora. We use spontaneous speech from the
Buckeye corpus [20] to reflect use cases such as speech enhance-
ment in wideband telephone channels or multimedia retrieval in web
videos. Furthermore, to simulate the influence of various noise types,
we consider (i) the CHiME 2011 Challenge [21] background noise
corpus as an example for realistic noise recorded in a domestic en-
vironment that contains both stationary and non-stationary noises;
(ii) the ‘Twenty Years on MTV’ collection of popular music as non-
stationary ‘noise’; and (iii) the NOISEX database [22] for mostly
stationary, environmental noise. The MTV collection consists of
200 songs covering the years from 1981 to 2000 as well as various
genres from hip-hop to country music, and featuring male as well as
female singers. Other types of noise are gathered to build a 17 min
training sequence, composed of noise recordings from the SiSEC
2010 noisy speech database1 as well as the SPIB noise database2 and
street noise from the soundcities website3. All data are converted to
16 kHz sampling rate, monophonic audio.

As evaluation data, we use 80 test sentences from the 40 speakers
of the Buckeye corpus (two from each speaker). These are mixed
with random recordings of each of the three noise databases at SNRs
between -9 dB and 12 dB. This results in 240 test files.

1http://sisec2010.wiki.irisa.fr/tiki-index.
php?page=Source+separation+in+the+presence+of+
real-world+background+noise

2http://spib.rice.edu/spib/select_noise.html
3http://www.soundcities.com
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Acronym Name g(H)
[
∇g+(H)

]
i,j

[
∇g−(H)

]
i,j

L1 L1-norm
n∑

j=1

r∑
i=1

hi,j 1 0

RNL1 Row-Normalized L1-norm
r∑

i=1

∑n
j=1 hi,j√∑n
k=1 h

2
i,k

1√
1
n

∑n
k=1 h

2
i,k

√
Nhi,j

∑n
k=1 hi,k(∑n

k=1 h
2
i,k

)3/2
CNL1 Column-Normalized L1-norm

n∑
j=1

∑r
i=1 hi,j√∑r
k=1 h

2
k,j

1√
1
n

∑r
k=1 h

2
k,j

√
Nhi,j

∑r
k=1 hk,j(∑r

k=1 h
2
k,j

)3/2
L1/2 L1/2 quasi-norm

n∑
j=1

(
r∑

i=1

√
hi,j

)2 ∑r
k=1

√
hk,j√

hi,j

0

WE Wiener Entropy
n∑

j=1

(∏r
i=1 hi,j

) 1
r

1
r

∑r
i=1 hi,j

(∏r
k=1 hk,j

) 1
r

hi,j

∑r
k=1 hk,j

r
(∏r

k=1 hk,j

) 1
r(∑r

k=1 hk,j

)2
GM Geometric Mean

n∑
j=1

(
r∏

i=1

hi,j

) 1
r

(∏r
k=1 hk,j

) 1
r

hi,j
0

Table 1. Sparsity criteria and nonnegative decomposition of the gradient used.

4.2. Experimental Setup

NMF is applied to magnitude spectrograms computed using Ham-
ming windows of 32 ms length with 50 % overlap.

Two types of separation methods are considered. The first one
consists in supervised NMF, which is well-suited for on-line process-
ing [23, 24]. Speaker-dependent speech dictionaries are learned using
sparsity-penalized NMF from a 1-minute set of (clean) utterances
that is disjoint from the set of test utterances. The noise bases are
learned from the training noise sequence. The number of components
for each source is set to r = 25. In the second experiment, the
separation is done by semi-supervised NMF, using the same speech
dictionaries. The noise bases are estimated by the NMF separation
algorithm, where the number of noise components is set to 8.

In the separation step, we perform a fixed number K of update
iterations, where K is chosen from {1, 2, 4, . . . , 128}. For each
sparsity criterion, several values of the parameter λ (4) are tested.

We measure the performance of speech enhancement in terms
of energy-based measures—source-distortion ratio (SDR), source-
interference ratio (SIR) and source-artifact ratio (SAR) [25]—and the
Covl, Csig and Cbak measures [26] estimating mean opinion scores
(MOS) of overall perceptual quality, perceived quality of the wanted
signal and perceived quality of the interference signal, on a scale from
1–5. The obtained scores are compared to the ones corresponding
to the original noisy signal and the baseline system, constituted by a
standard unconstrained NMF system. Statistical significance tests are
performed by paired-sample t-tests.

4.3. Results

In a first experiment, we compare two NMF approaches for the
separation. In the “constrained separation” approach, the separation
is performed with the same sparsity-constrained NMF algorithm
as was used for the learning of the bases. In the “unconstrained
separation” approach, the bases are also learned with sparsity penalty,
but the separation uses the standard NMF algorithm as outlined in
Section 2.1.

Fig. 1 displays the average overall perceptual measures (Covl)
obtained by supervised NMF with each of the tested sparsity criteria
after K = 32 iterations. This parameter has been found to be the
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Fig. 1. Average Covl measures obtained with unconstrained and
constrained supervised NMF, after K = 32 iterations. The non-
represented bars correspond to scores lower than 2.15.

optimal number of iterations on this experiment. For every setting,
the unconstrained approach delivers better Covl scores. This does not
depend on the number of NMF iterations. Even if the constrained
separation leads to some small SDR increases (up to 0.4 dB) using
the semi-supervised NMF with some specific settings, the perceptual
score is not improved in any of the tested systems.

These results indicate that, in the case of incomplete dictionaries
as considered in this study, applying a sparsity penalty term in the
separation phase does not really improve the speech separation quality.
On the contrary, it can interfere with the accurate modeling of the
signal and deteriorate the quality of the resulting signals. Hence,
the rest of the experiments will only focus on the unconstrained
separation approach.

Fig. 1 and 2 displays the average Covl and SDR measures ob-
tained with supervised NMF after K = 32 iterations. It can be
observed that the L1 and RNL1 sparsity criteria actually degrades the
separation results compared to the baseline unconstrained NMF, in
terms of both used metrics. The other tested systems significantly im-
prove the SDR (except for the CNL1 with λ = 10, where p > 0.001).
According to this metric, the best setting is the L1/2 criterion with
λ = 1 (5.7 dB against 4.2 dB for the baseline). However, the corre-
sponding Covl is lower than the baseline (2.45 against 2.50). Indeed,
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Fig. 2. Average SDR obtained with supervised NMF after K = 32
iterations.
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Fig. 3. Average SDR obtained with semi-supervised NMF as a func-
tion of the number of iterations. Sparsity constraint used in speech
base learning only. Average SDR of the noisy samples: 0.8 dB.

because of the very high level of sparsity imposed during the training,
the learned base is composed of “broadband spectra”, which do not
discriminate well speech and noise.

However, the Wiener entropy-based criteria allow for a significant
increase of perceptual score (p<0.001). The best average Covl of 2.57
is obtained by the WE system with λ = 100 which also exhibits a
high SDR (5.5 dB). This shows that the proposed criteria allow for an
efficient learning of the speech and noise dictionaries.

With both supervised and semi-supervised NMF, we observed
that the L1 and RNL1 criteria do not significantly improve the overall
quality of the speech separation. These criteria also favors “temporal
sparsity”, according to which the proportion of the frames where a
component is active is small, and this property may not be well suited
to speech signals.

For each of the other sparsity criteria, we selected the value of
λ which yielded the best results. The average SDR and Covl scores
obtained are displayed in Figs. 3 and 4. We can first observe that
the separation quality is consistently better than previously, thanks
to a better estimation of the noise dictionaries. Besides, the optimal
number of iterations is modified. For supervised NMF, it was found
to be K = 32 independently of the setting, whereas in the semi-
supervised case the best SDR is obtained after only 8 iterations.

Another observation is that the curves corresponding to the two
metrics do not exhibit exactly the same behavior: The SDR obtains its
declines after 8 iterations, while the Covl continues to increase until
about 32 iterations. The decrease of SDR is due to the addition of
artifacts (the SAR decreases, because of an overfitting phenomenon),
which is not balanced by the suppression of noise. However, these
artifacts become perceptually disturbing only after some further itera-
tions. An interesting property of the considered sparsity criteria, is
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Fig. 4. Average Covl obtained with semi-supervised NMF as a func-
tion of the number of iterations. The average score of the noisy
recordings is 2.32.

System Noisy Baseline CNL1 L1/2 WE GM
λ – – 1 0.1 100 1000
K – 64 16 32 32 32

SDR (dB) 0.8 5.7 6.3 6.1 6.1 6.2
SIR (dB) 0.8 9.4 10.8 10.9 10.3 10.4
SAR (dB) ∞ 10.4 10.3 9.8 10.2 10.3

Covl 2.32 2.67 2.69 2.68 2.67 2.67
Csig 2.75 3.20 3.22 3.22 3.20 3.20
Cbak 2.10 2.50 2.55 2.55 2.54 2.54

Table 2. Average scores obtained with semi-supervised NMF.

that they “accelerate” the separation process compared to the baseline
NMF, which attains the maximum SDR after 16 iterations and the
maximum Covl after 64 iterations. Thus, a similar (or even better)
separation quality can be obtained with half the number of iterations.

The scores obtained with the selected systems after the optimal
number of iterations (according to the Covl metric) are summarized
in Table 2. All the systems using sparsity constraints obtain higher
SDRs and SIRs as the baseline setting, while the loss in SAR is not
statistically significant (p>0.001), with the exception of L1/2. They
also allow for an improvement of the perceptual measures, although
the increase in Covl is not significant (p > 0.001).

5. CONCLUSION

We have studied the influence of several common forms of sparsity
penalties in the context of speaker-dependent speech separation by
NMF. We have also introduced two novel criteria based on the Wiener
entropy function. The results of an evaluation on spontaneous speech
corrupted by a wide range of noise showed that the use of a sparsity
penalty in the separation phase was not useful. However, spectral
bases learned using the proposed criteria delivered the highest separa-
tion quality in the case of supervised NMF. In semi-supervised NMF
experiments, several sparsity criteria provided slightly better results
than the baseline NMF, with the advantage of a faster convergence to
the optimal quality.

6. RELATION TO PRIOR WORK

Several sparsity criteria have been proposed in the literature for source
separation using NMF [15, 14, 16]. However, to the authors’ knowl-
edge, no systematic analysis on the usefulness of these penalties have
been conducted. We compare several common approaches, along with
two novel criteria, on a large scale evaluation of speaker-dependent
speech separation.
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