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ABSTRACT

We address the problem of audio indexing for a class of special-
case scenarios, where it is required to index an audio stream into 2
classes, namely, a target class and a background class, as arising, say
in, audio surveillance and machine diagnostics. With the emphasis
on dealing with limited training exemplars defining the target class in
these scenarios, we propose a 2-class ‘audio verification’ framework,
where the target and background classes are modeled by GMMs and
the indexing is done via a sliding window based detection. We char-
acterize the performance of the system in terms of ROCs, EERs and
visual detection plots for a set of 2 target classes and 4 background
classes from a surveillance audio database and show the viability of
such a system in practical applications. We highlight the robustness
of the system to high levels of background-class using visual detec-
tion plots of continuous audio streams at SNRs ranging from 30 dB
down to -20 dB.

Index Terms— Audio indexing, 2-class verification, audio ver-
ification, surveillance audio, machine diagnostics

1. INTRODUCTION

Audio indexing, in the conventional sense, involves segmenting and
labeling (the segments) of an input audio stream into one or more
pre-defined audio classes. It is generally assumed that the audio
stream is made of a sequence of non-overlapping audio sounds oc-
curring in some unspecified order and of varying durations each. The
audio sounds are also assumed to belong to a set of N ‘vocabulary’
audio classes. In a variation of this scenario, it is possible to consider
the sequence of audio sounds (drawn from the pre-defined vocabu-
lary of audio classes) to occur interspersed in a background audio
(some other audio classes), thereby giving rise to a segmentation
and labeling problem in terms of the vocabulary audio-classes and a
background class making up the (possibly larger proportion of the)
audio stream.

For arbitrary N (N > 1), the above problem is best handled in a
manner similar to watch-list based detection frameworks, i.e., in an
open-set identification framework (or the multi-target identification
framework) [1], [2], [3]. In contrast, in this paper, we deal with
a refinement of the above scenario as a special case variant of the
above definition with N = 1, i.e., the audio vocabulary has only
one audio class (called the ’target’ class of interest) to be detected
in an input audio stream predominantly made of a background class.
Thus, the input audio stream is essentially a background class in
which one specific ‘target’ audio class occurs at unspecified times
and of varying durations from instance to instance, theretby reducing
the problem to a 2-class indexer in terms of alternating target and
background labels. Fig. 1 illustrates the general set-up of a 2-class
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verifier system. In the following, we present two scenarios where
this system in used.

Fig. 1. Generic audio indexing for 2 class special case scenarios.

Scenario 1: In a typical security and surveillance context, a surveil-
lance camera provides a video and audio stream of the place under
its purview. A large number of events could take place, e.g., for a
camera in a parking-lot, the various events would be car pass by, car
braking, car horn, footsteps, babble, car door open/shut sounds, etc..
Here, it is of interest to detect a critical event, say glass-breaking, as
when an intruder attempts to break-in to a car by breaking a car door
glass or car-alarm, even while considering all other sounds as not
of interest, i.e., possibly making up the ‘background’ class, made of
multiple heterogeneous sounds. Such an audio indexing system can
operate both on-line and off-line, generating actionable intelligence
of different nature. For example, a) on-line, when it is indexing a live
audio feed from a camera in order to detect a live break-in, to fur-
ther trigger an alarm, operator alert, camera feed recording or other
actions, or b) off-line, when it is required to index a stored camera
feed - possibly a day long recording at the end of the day - so as to
generate an indexed data, with the index information, i.e., segmen-
tation and labeling, being stored as meta data along with the raw
camera audio and video feed for future retrieval as in forensic search
requirements.
Scenario 2: Industrial machinery (e.g. turbines, wind-mills etc.)
generate considerable number of acoustic signatures each of which
carries significant information on the health of the machinery (as a
whole or specific parts generating the said acoustic signature). The
machinery is expected to be in normal conditions much of the time,
with ‘abnormal conditions’ (deviant states or faulty conditions) oc-
curring intermittently or rarely. Therefore, an audio stream gener-
ated via an appropriate sensor can be considered to be largely made
of a background class representing the ‘normal condition’ while be-
ing interspersed with occasional occurrences of the acoustic signa-
tures of the ‘abnormal conditions’. The audio corresponding to the
abnormal conditions can be considered to define the ‘target’ class
(of which there could be several types and instances, i.e. with high
acoustic variability). The audio representing the normal condition
then defines the ‘background’ class (typically characterized by no or
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Fig. 2. Schematic of the 2-class audio verification framework.

minimal acoustic variability). An audio indexing system plays the
following role here: it is required to index an input audio stream in
terms of normal and abnormal classes, in the form of a segmentation
and labeling, essentially detecting the occurrences of the abnormal
conditions (target classes), with such target detections forming ac-
tionable intelligence for triggering an operator alert or other machine
diagnostic services to be brought in.

A further consideration in the above indexing scenarios is the
availability of training exemplars of the target classes. It can be
noted that in either of the two scenarios above, the target class data’s
availibility is limited with respect to being able to build robust mod-
els (i.e., during a training phase) required for further classification
and detection during test conditions. For instance, in the case of the
surveillance scenario, for a target class as ‘glass-breaking’ (car-glass
or retail windows), it is fairly impractical to expect large amounts
of training data due to the difficulty in acquiring such data by actu-
ally breaking glasses; note for instance, the arduous data collection
protocol involved in the Glass Break Sound PackTM development
of a commercial solution [4]. Likewise, in the second scenario of
machine diagnostics, by definition, the abnormal conditions making
up the target class occur infrequently (or even not at all), thereby
making training data availability scarce.

In this paper, we propose a 2-class verifier (or simply an ‘audio
verification’) framework wherein the target class models are built
as GMMs from limited training data and used alongside background
class models (trained from possibly larger amount of training data) in
a verification framework. A short sliding window (clip) of the input
audio is verified as being the target class or not (i.e., background
class). Successive clips with same decision labels are coalesced into
a larger segment bearing the same label to yield the desired indexing
in terms of alternating target and background classes.

2. TWO-CLASS VERIFICATION FRAMEWORK

Fig. 2 shows the schematic of the 2-class verification system pro-
posed here for segmentation and labeling of the 2-class audio data.
This system is similar to a speaker verification system, involving the
following main steps:
Step 1 - Model training: The target and background models - Gaus-
sian mixture models (GMMs) λT , λB - are first trained from the
target and background ‘model-training’ data (T1, B1) using EM al-
gorithm [5].
Step 2 - θ-training: Obtaining the optimal decision threshold θ∗

that defines the equal-error-rate operating point for the target and
background ‘θ-training’ data sets (T2, B2). This θ-training data
is used to derive the normalized target and background score his-
tograms from which the probability of false-alarms pfa(θ) and the

probability of false-rejections pfr(θ) are obtained for various θ val-
ues. This yields the receiver operating characteristic (ROC) curve
of pfr(θ) vs pfa(θ) and the equal-error-rate (EER) point when
pfa(θ

∗) = pfr(θ
∗) = EER. The optimal θ∗ corresponding to

EER on the θ-training data set is used further for testing on unseen
test audio stream as shown in Fig. 2.
Step 3 - Testing: Test data is considered in the form of a continuous
audio stream made of alternate target (T) and background (B) classes
(as shown in alternating red and yellow strips respectively in Fig. 2).
The 2-class verification decision is obtained on sliding short clips of
data X1, X2, . . . , Xi, . . . , XM , i.e., obtain target (T) / background
(B) verification decision for clips Xi, i = 1, . . . ,M , as follows:

1. For each clip X , obtain feature vector sequence X =
(x1, x2, . . . , xt, . . . , xT ). Here, xt is a mel frequency cep-
stral coefficients (MFCC) vector of dimension d = 12, ob-
tained on a frame-size of 20ms, yielding T = 10 feature-
vectors/clip for clip duration of 200ms.

2. Verify each clip X as target (T) or background (B) class:
• Compute normalized score s = p(X|λT )/p(X|λB),

where p(X|λT ) and p(X|λB) are the likelihoods of
the vectors {xt}t=1,...,T in the test clip X to the GMMs
λT and λB respectively.

• s ≥ θ∗ → X is target (T)
• s < θ∗ → X is non-target (background B)
• Decision label L(X) = T or B

Above verification for (X1, X2, . . . , Xi, . . . , XM ) yields clip-
level label sequence L(X1), L(X2), . . . , L(Xi), . . . , L(XM ). Sub-
sequent to clip-level decisions as above, contiguous clips with same
decision are coalesced to yield segment-level labels; i.e., if L(Xi) =
L(Xi+1) = . . . = L(Xi+j) = T, then L(Xi, . . . , Xi+j) = T,
to yield the final target / background segmentation as shown as
(. . .BTBTB . . .) in the figure as the final output of the verifier sys-
tem. The actual system performance on unseen test data is given by
(pfa(θ

∗), pfr(θ
∗)), which reflects the (false-alarm, false-rejection)

performance when the system uses the optimal θ∗ for verifying un-
seen test data, as in field conditions.

3. EXPERIMENTS AND RESULTS

In this work, noting the practical utility of glass-breaking and car-
alarm sounds in a surveillance scenario, we have used 2 target
classes, namely, glass-breaking and car-alarm and 4 background
classes, namely, market, babble, footsteps and public announce-
ment (PA). We obtained training (separate data sets for model and
θ-training) and test data for these 6 classes from the databases BBC
Sound Effects Library, Series 1000 and Series 6000 [6].
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Here, we present results characterizing the overall perfor-
mance of the system in terms of i) EERs and ROC curves of
the system as obtained during θ-training on data sets (T2, B2), ii)
(pfa(θ

∗), pfr(θ
∗)) obtained on test data, and iii) decoding plots on

test data, comparing the coalesced final output of the verifier with the
ground truth in the form of time synchronous double-color strips for
select target, background class combinations and at different target-
to-background SNRs.

Table 1. 2-class verifier performance: EERs during θ-training for
the 2 target classes in 4 different background classes.

Target Background class
Class Babble Footsteps Market PA

Glass Breaking 9.85 19.83 3.28 0
Car Alarm 3.35 0.91 6.99 0.51

Table 1 shows the EER of the θ-training stage for the 2 target
classes, each in combination with 4 different background classes.
The EER is obtained as (pfa(θ∗)+pfr(θ

∗))/2), i.e., the mean of the
false-alarm and false-rejection probabilities (in %) at the optimal θ∗.
We also show in Fig. 3 the corresponding ROC curves obtained for
these 2 target classes with each of the 4 background classes during
θ-training. The EERs marked in the ROCs in Fig. 3 (a) and (b) are
as shown in Table 1.
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a) Target Class: Glass Breaking
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b) Target Class: Car Alarm

Fig. 3. ROC plots of the 2-class verifier for 2 target classes a) glass-
breaking and b) car-alarm in 4 different background classes, ob-
tained during θ-training.

A range of performance can be noted, primarily from the stand-
point of how distinct the target class is with respect to the back-
ground class in any given target-background combination: i) Glass-
breaking performs best in ‘PA’ background; it also performs surpris-

ingly well in ‘Market’ background despite the heterogenous mix of
sounds that the market class is made of, ii) Car-alarm performs with
a consistently low EER across all background classes, owing to its
unique signature. These observations are to be qualified further by
noting that the GMM modeling of the classes is static in nature and
does not capture the underlying temporal dynamics and signatures
of the classes involved. Thereby the matching scores obtained, at
best, capture only the spectral characteristics without being able to
discriminate the classes using the temporal evolution of the sound
spectra, as will template models or hidden Markov models (HMM);
this was noted in our earlier work [20], where HMMs outperformed
vector quantization (VQ) and GMM based audio decoding.
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Fig. 4. Continuous test audio stream decoding performance of the 2-
class verifier for a) ‘glass-breaking’ and b) ‘car-alarm’ in 4 different
background classes. In each figure, top strip is the ground truth of
test audio stream and adjoining bottom strip is the decoding output.

Fig. 4 shows the decoding of continuous test audio stream as a
strip-plot (with ground truth as the top strip and the 2-class verifier
output as the adjoining bottom strip) using the θ∗ derived from the
ROC plots in Fig. 3. The following can be noted with reference to
the decoding strip-plot in Fig. 4:
i) The target class segments are detected quite accurately, and can
be considered acceptable for a practically useful system. For glass-
breaking during footsteps, 2 of the 10 target instances are missed
contributing to the high false-rejections. Apart from this, the system
detects all the ‘glass-breaking’ and ‘car-alarm’ segments accurately
for all the background classes.
ii) Noted alongside the 8 strip-plots in Fig. 4 are the
(pfa(θ

∗), pfr(θ
∗)) [%] for each of the 8 cases. A prominent

pattern across most of the target-background combination is that
(pfa(θ

∗), pfr(θ
∗)) is skewed (i.e., lower pfa(θ

∗) and higher
pfr(θ

∗)) than the corresponding training EER. While the detec-
tions are accurate, a closer observation of the strip-plots reveals that
this skewing primarily arises from a number of misclassified ‘test
clips’ (thin vertical lines with mismatching color) - short sporadic
instances or extensions of target/background segments. Such a be-
havior therefore does not detract from the good primary detections as
is visibly seen in Fig. 4 which translate into correct actionable intel-
ligence in a practical system. However, this also leads to the conclu-
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sion that the system performance can be improved significantly by
merely targeting and correcting for this skewed (pfa(θ

∗), pfr(θ
∗))

by any of several means: a) use of longer clips X in scoring, b) use
of variable length clips after model-free change detection [7], c) use
of duration constraints for smoothing and integrating the individual
clip decisions into the longer ‘coalesced’ decision.

iii) Another important causative factor of the skewed
(pfa(θ

∗), pfr(θ
∗)) is the training-test mismatch, where we

have observed the ‘test’ data to have high variability (with respect
to the data used in GMM model training and θ-training) with
resultant low scores (low GMM likelihoods) of the test clips with
the GMMs and a corresponding left-ward shift in the target-score
and background-score histograms with respect to the histograms
obtained during θ-training. Consequently, a good proportion of
the ‘test’ background clips have scores less than the operating
threshold θ∗ and thereby a lowered pfa(θ

∗). Likewise, a higher
pfr(θ

∗) results from the lower scores (lower GMM likelihoods)
of the ‘target’ test clips, i.e., a corresponding left-ward shift of
the target score histogram and consequent increase in the number
of test clips with scores lesser than θ∗ leads to more target clips
being falsely-rejected. This becomes evident in the relatively larger
proportion of very short lines of black (target clips/segments)
being classified as grey (background). As this clearly points to the
training-test mismatch as a major contributing factor, this is best
addressed by ‘model adaptation’. That is, an on-line unsupervised
adaptation, as is common in on-line speech recognition systems [8],
[9] using adaptation methods such as MAP, MLLR etc. [10], [11],
to adapt the model (GMM) parameters and match them to the new
test data continuosly.

Next, we examine the robustness of the system to varying levels
of background class, by treating it as additive noise with respect to
the foreground target class. For this, we created continuous stream
sound mixtures of 10 different target instances (glass-breaking) in a
long backgrouund audio (market), at SNRs ranging from 30 dB to
-20 dB in steps of 5 dB. Fig. 5 shows the decoding results of the 2-
class verifier for such continuous test audio streams at various SNRs.
All 10 target segments are ‘detected’ from 30 dB down to 10 dB, 7
segments at -5 dB SNR, 6 segments at -10 dB SNR and 3 segments
at -20 dB SNR. This performance is satisfactory from a practical
standpoint, where ambient conditions with -5 dB SNR are a good
upper bound on the background level. However, SNRs above 10 dB
are preferable for applications that require close to 100% detection
accuracy such as triggering of on-line operator alerts or reliable off-
line forensic search.
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Fig. 5. Decoding performance of 2-class verifier for SNR data: tar-
get class as ‘signal’ and background class as ‘noise’ at SNRs rang-
ing from 30 dB down to -20 dB.

4. RELATION TO PRIOR WORK

The 2-class indexing proposed here can be viewed as a constrained
special case of a multi-class audio indexing as has been studied in
earlier work. Specifically, much of the earlier work has focussed
on ‘isolated instance’ multi-class classification using various types
of modeling and classification, such as K-nearest-neighbor (K-nn)
classification [12], [13], decision tree clsasification [13], quadratic
Gaussian classifier [13], GMM [12], [20], templates [19] and HMM
[14], [15], [16], [17], [18], [20]. Specifically, in [19] and [20], we
proposed audio ‘decoding’ solutions using template based modeling
and HMM based modeling, wherein an incoming audio stream made
of multiple audio classes can be segmented and labeled from the
given vocabulary of audio classes using either the one-pass dynamic
programming decoding algorithm or the Viterbi decoding algorithm.

Our approach to audio indexing reduces the problem of multi-
class classification and indexing to a two-class segmentation and
labeling into a specific target class and background representing a
non-target class. More specifically, the proposed two-class verifier
aims to detect a target class of interest occurring in a heterogeneous
background made of possibly many types of atomic sounds. For ex-
ample, each of market, traffic or parking-lot audio superimposes a
variety of atomic classes such as car-pass by, car-horn, car-screech,
car-braking, door open/shut, babble, footsteps etc. Rather than at-
tempting to model such a heterogeneous background class in terms
of the individual audio classes from a multi-class vocabulary, we
shift the emphasis towards an efficient two-class verification system
that essentially makes a target/non-target decision for every short
clip of input audio, with the non-target decision being equivalent to
the input clip being classified as background class. In other words,
the focus shifts to how efficiently the background class can be mod-
eled. This is very much akin to the speaker verification problem
of deciding on an input speech as from a claimant speaker (target)
or an impostor (non-target), with the emphasis being laid on how
effectively to model the impostor (non-target) population by using
universal background models (UBMs) or cohorts [21], [22], [23].

In this context, it is appropriate to note that an alternate ap-
proach to this 2-class indexing could be to use 1-class SVM [24],
whose ‘positive data set’ is defined to comprise the background
class (whose training data is adequately available) and which there-
fore can detect the target class - even with no training data - as an
outlier-detection (or also termed novelty-detection) problem. How-
ever, given the availability of both limited target data and adequate
background data as in the scenarios considered here, the 2-class ver-
ification framework proposed and studied here can be expected to be
more appropriate, efficient and offer better performance.

5. CONCLUSIONS

We have proposed a 2-class audio-verification system for audio in-
dexing of special case scenarios such as arising in surveillance and
machine diagnostics settings. Here it is of interest to detect a target
class occurrance amidst a background which can potentially be con-
sidered a single class, though possibly made of a large number of
unknown and heterogenous classes, but distinct from the foreground
target class of primary interest. We have studied the performance of
the system for 2 target and 4 background classes in a surveillance
setting and characterized the performance of the system in terms of
ROCs, EERs and the actual (false-alarm, false-rejection) probabili-
ties on unseen test data. We have shown that the system offers high
performance with practically useful detection ability down to 10 dB
SNR and acceptable performance even for SNR down to -5 dB rep-
resenting very high background noise levels.
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