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ABSTRACT

Current audio analysis techniques rely on fairly shallow analysis of
audio content, using symbols or patterns extracted directly from the
observed acoustics. We hypothesize that the observed acoustics ac-
tually map to semantics in a hierarchical manner, and that the higher
levels of this hierarchy correspond to increasingly higher-level se-
mantics. In this paper, we present a model for deeper analysis of
the observed acoustics, that induces a probabilistic tree structure
depending on estimated constituent identities and contexts. Audio
characterization using the deeper structure outperforms the standard
shallow-feature based characterizations.

Index Terms— automatic content analysis, structure discovery,
unsupervised learning, semantic audio

1. INTRODUCTION

The analysis of audio content is required for various common tasks—
e.g. audio classification, retrieval, segmentation and recounting.
Many different approaches have been formulated in the literature
for these tasks. Typically, however, most of these approaches work
directly off of the observed acoustics. In this paper, we posit that
the audio content contains a wealth of information in its structure
and sequence that would allow a task-agnostic automatic system to
analyze it, and that information from these analyses would directly
enable the wide range of tasks mentioned earlier.

While traditional audio content analysis has relied primarily on
shallow analysis of the observed acoustics, based on detection or
single-level latent variable models, in this paper, we present a hier-
archical paradigm for content analysis that can be used for deeper
analysis of the audio content. Figure 1 shows an instance of the
kind of analysis that we believe can be extracted by our framework,
using an example from baseball audio. The lowest level of this
tree structure corresponds to low-level, generalized acoustic units,
which may not carry discernible semantic information individually,
but the sequences or distribution patterns of these units should cap-
ture higher-level semantic information— we refer to higher-level pat-
terns as events. These event units themselves might contain certain
patterns, corresponding to still more complex events. In most nat-
ural audio, these events themselves do not occur in isolation. They
are related to each other in different ways, and event context provides
cues for possible future events (event dependencies are indicated by
arrows in the figure). Further, the event sequences themselves should
carry information about the overall semantic content or class of the
audio.

Such hierarchical analysis structures could not only be exploited
for various audio analysis tasks, but also to develop a better under-
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standing of relationships between events. The primary issue in esti-
mating such structures for audio is a scarcity of richly annotated data
with information at the various hierarchical levels that could be used
to provide supervision.

To address this issue, this paper proposes an unsupervised model
for structure induction that can leverage easily available, but unla-
beled, data. Given simply an audio corpus, our model estimates cor-
responding, hierarchical tree structures.

Whether the structure induced by such unsupervised models
would be consistently semantically coherent or human-interpretable
is unknown, at this point in time. However, there are compelling
motivations behind such approaches. The process of building richly
annotated, hierarchically labeled data sets would be an expensive and
time-consuming one, and the output of unsupervised approaches can
be used both to obtain labels for and verify some coherent seman-
tic units, as well as use them to seed semi-supervised approaches,
thus building up labeled resources. Besides, while the presented
approach makes no claims toward modeling human approaches to
scene understanding, the extracted co-occurrence information and
contextual cues provide a potential basis for comparisons to human
reasoning processes in future work.

While an ideal evaluation framework would directly measure
the generated structure by comparing it with ground truth structures
(generated by annotators), such data is expensive to obtain. We pro-
pose, instead, to use the structured information generated by our
models as features for characterization of audio for a retrieval task.

N
| C, )Baseball
P ‘. 4

Str\kedut “ [ Smgle

Batting in a run e

A\\\\/\

H\tsball‘ \M1 —x Vacheermg

71:?94\;1“1
che \ \
\

/

Fig. 1. An instance of hierarchical analysis for audio.
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The rest of the paper is organized as follows: in Section 2, we
review related prior work. We present our model for unsupervised
structure induction in Section 3, and present our experiments with
using the induced structure for an audio retrieval task in Section 4
before concluding in Section 5.

2. RELATED WORK

Audio categorization and retrieval systems largely rely on lexicon-
based approaches, where the individual lexical units model sound
types or sources. Several approaches have been successfully em-
ployed for lexicon learning including detector-based approaches us-
ing supervised data as well as unsupervised lexicon learning tech-
niques [1, 2, 3, 4, 5]. These lexical units usually perform well at
the task of capturing acoustically consistent phenomena, but cannot
explicitly use the structure of the audio data to perform any further
semantic analysis. For instance, acoustics similar to a dull metal-
lic collision may be produced by very different semantic sources—
a hammer striking an object, a baseball bat hitting a ball, or a car
collision. The proposed hierarchical approach aims to automatically
leverage different contextual cues to identify differing semantics at
the appropriate level in the hierarchy.

Various models can be developed for the individual higher or-
der layers for the framework in Figure 1, such as in [6]. Unlike [6],
which estimates higher levels in the hierarchy one layer at a time,
the method outlined in this paper estimates the entire tree structure
jointly following approaches similar to those used in text parsing,
as we shall describe. Distributional clustering approaches have been
used for part-of-speech induction [7, 8] and have resulted in high-
quality clusters, though the clusters resemblance to classical parts-
of-speech varies substantially. Grammar induction approaches have
dealt with attempting to uncover tree structures unsupervised, us-
ing the assumption that the tree was generated by a probabilistic,
context-free grammar [9, 10], using assumptions of fixed structure,
linguistic constraints or prior knowledge, but these approaches only
had limited success. Subsequent models for generating tree struc-
tures, based off of the assumption that valid constituents in a tree
should be non-crossing, met with much greater success [11, 12].

3. PROPOSED MODEL

Due to the similarity of the task we are attempting to solve with those
from the parsing of natural language text, the primary model that we
experiment with in this paper to generate the hierarchical structures
of the type shown in Figure 1 follows the constituent-context model
[11], which proposes a parametric family of models over trees. We
begin by first estimating the lowest level acoustic units (indexed by a
in Figure 1), to convert the continuous audio sequence to a discrete
representation. The process of inducing the higher-level structure
works on top of this representation, and we show in our experiments
in Section 4 that features derived from this structure improve over
characterizations using simply the acoustic units.

Given the low-level acoustic units for an audio recording, the
task of inducing a tree structure can be divided into two tasks— first,
we need to decide constituent identity, i.e. which and how many of
the consecutive low-level units should belong to the same higher-
level constituent; and second, we need to decide the label for the
constituent. While these tasks are correlated, the task of labeling
the constituents is the easier of the two, since the distribution of the
lower-level acoustic units within the constituents can be used to clus-
ter the various constituents. The task of deciding constituent identity
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is significantly harder in our case, because the process of estimation
the lower-level acoustic units is typically noisy; unlike text, where
the observed surface forms typically correspond to ground truth, the
observed audio can contain noise both in terms of innate variations in
semantic content, as well as additive background noise that can cause
errors in estimation of the lower-level units. As in [11], the proposed
model relies on two assumptions: (i) constituents of a parse do not
cross each other, and (ii) constituents occur in constituent contexts.
Let A be a sequence of the estimated lower-level acoustic units,
such that for any given recording, A = aias2...an;. Every sub-
sequence of 4; occurs in some linear context ¢, where c(.A?)
aj71.,4§ak+1, where the context elements correspond to the adja-
cent acoustic units for the subsequence. Then we can view any tree
t over a sequence A s as a collection of sequences and contexts.
Good trees will include nodes whose yields | frequently occur as
constituents and these constituents are frequently surrounded by ex-
pected contexts. To formally model this, we use a log-linear model
with the form for the conditional distribution being as shown below:

eXp(E{A?’C}Et )\Agc f_A;C + Acfc)

Zt:yield(t):A exp(Z{Af,C}et )\A’; fA;" + >\cfc)
M

Thus, for each tree, we have one feature f , for each constituent
J

P(t|A,0) =

subsequence .A? in the tree, and its value is the number of nodes in
t with yield A? , and one feature f. for each context ¢ representing
the number of times c is the context of the yield of some node in the
tree. Joint features over the context and the yield are not used, and
no distinction is made between the constituent types at this point.
We model the conditional likelihood of a tree ¢t as P(t|.A, ©),
where © = {/\A;; , Act, V{J, k} that form constituent subsequences.

We use an iterative EM-like procedure to find the best parameter es-
timate given the observed acoustic unit sequences for the given data.
The parameter set © is initialized to zero and each audio recording
is initialized to with a random tree structure for the observed acous-
tic unit sequence for each recording. In alternating steps, then, we
find the the best parameter update © and the best guess for the tree
structure for each of the acoustic unit sequences, given the updated
parameters, using a dynamic program. For any O, this produces
the set of tree structures 7 that maximizes P(T'|{.A},®). Thus,
P(T*|{A},©) > P(T|{A}, ©) (Here, T refers to the set of most
likely set of trees for the set of audio recordings {.A}). The iterative
process then fixes these estimated tree structures to update the pa-
rameters. Given the choice of exponential family in Equation 1, we
do not have a closed-form update rule for the parameters, and will
need to adopt a numerical solution for updation, such as conjugate
gradient.

Due to the varied linear contexts that can occur in the lower-
level acoustic unit sequences, smoothing plays an important role in
determining the quality of the induced tree structures. The current
system can model arbitrarily long yields, which occur infrequently.
The corresponding parameters for these yields may not significantly
change from their initial choices, in spite of multiple learning itera-
tions. Ideally, we would like the weights for unlikely occurrences to
have very little influence, by making them as close to zero as pos-
sible, thus skewing the distribution of values in A Al towards low

values.

IThe yield of any non-terminal node in a tree structure refers to the se-
quence of terminals produced by the subtree rooted at the non-terminal node.



In the conjugate gradient setting, parameter estimates are slow
to converge and difficult to smooth with desired priors. Thus,
we adopted a different approach that proved to work quite well
using the simple smoothed relative frequency estimates, where
A = % This estimation process ensures that the pa-
rameter values lie between 0 and 1, providing a bias toward non-
constituency for long subsequences using high values for M.

Once the underlying most-likely tree structures have been com-
puted for all the audio recordings given their representation as se-
quences of low-level acoustic units, we then move to the second
stage of the process— that of labeling the induced constituents us-
ing a clustering technique. The only external input to this system at
this stage is the hyperparameter K for the number of clusters.

We performed clustering on the estimated constituent acous-
tic units using a modified k-means procedure, where we first se-
lected a set of K cluster centers. The distance of each induced con-
stituent (A?) to each of these cluster centers (C;) were computed us-
ing a combination of 2 factors— temporal sequence of the constituent
acoustic units, as well as distribution of the units in the constituent.
The intuition behind using the temporal sequence is apparent, since
we would expect similar higher order units to contain similarities in
their constituent sequences. However, since the lower level acous-
tic units are not ground truth, but in fact estimates from noisy de-
codes, different manifestations of the same higher-order unit might
be quite different due to insertions, deletions and substitutions in the
true sequence. To account for this, we consider the distribution of the
acoustic units as well. , where we estimate the L2 distance between
the distributions of the constituent and cluster centers.

We use the Levenshtein edit-distance (£(A¥, C;)) for any con-
stituent to each cluster center using the actual acoustic unit se-
quences that occurs in the constituent and the one for the cluster
center to model temporal similarity. For each constituent sub-
sequence, the distances to various centers are normalized by the
maximum distance to lie between 0 and 1. To compute the dis-
tance between the distributions, we compute the cosine divergence
between the 2 distributions (Cos(A¥,C;). The final computed
distance is a product of the 2 individual distances as follows:

DAY, C;) = L(AF,Ci) x (1 — Cos(AY,C))) 2)

The constituent A? is assigned to the cluster center C* chosen
as:
C" = arg rréin D(AY, C) 3)
While the semantic import of the tree structures and the induced
constituent labels cannot be understood directly from this process
in the absence of extensive studies using humans in the loop to un-
derstand if the constituents consistently capture human-interpretable
semantics, we hypothesize that these will provide positive improve-
ments on semantically defined tasks, if they do indeed capture some
underlying higher-level semantics. We present results with using
characterizations derived from the tree structures on an audio re-
trieval task in Section 4.

4. EXPERIMENTAL RESULTS

Since we do not have labeled data that can be used to directly analyze
the accuracy of the estimation process, we evaluate our framework
on an audio retrieval task. In this section, we first describe the data
and the task used in our experiments in Section 4.1. We discuss the
systems that we compare and explain how they are used to obtain a
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characterization of the audio for this task in Section 4.2, and Section
4.3 describes the classifier we use. Section 4.4 discusses the results
of our experiments.

4.1. Audio Retrieval Dataset and Task

For our experiments, we use the BBC Sound Effects Library CDs
1 — 20 consisting of 1120 different audio clips [13]. This library
consists of various conceptual categories of sound, and audio tracks
for the various categories contain complex audio due to the presence
of many different sounds; e.g. a supermarket audio contains voices,
sound from the checkout bell, trolleys and baskets being stacked.
Thus, these categories are defined at a higher semantic level than
datasets that contain instances of simpler sounds, such as gunshots,
laughter, etc. The BBC Sound Library recordings are of a high
and consistent quality, and allow us to compare compare different
systems in a setting where additional confounding factors are not
present, as is often the case in Youtube-style, user-generated con-
tent where different recording conditions and equipment introduce
channel variance.

The entire dataset was sampled at 16KHz, and 13-dimensional
Mel-Frequency Cepstral Coefficients (MFCC) were extracted from
the data, and this MFCC representation for the audio was used in all
the experiments reported in this paper. While there are a number of
categories in this dataset, we only use those that have at least 15 pos-
itive instances belonging to the category. Thus, we have the follow-
ing 10 categories— Exterior atmospheres, Household, Interior Back-
grounds, Transport, Animals, Audiences, Electronic Equipment, Wa-
ter, Birds, Warfare. All the other files have a negative label for each
of the 10 categories.

The audio retrieval task is defined as follows: given one of the 10
categories as input, the task is to retrieve all audio files belonging to
that category from the test collection. We compute Missed Detection
(MD) and False Alarm (FA) rates as follows: suppose there are N,
test files, with C; belonging to class ¢, and the detector predicts N;
as belonging to class %, and D; of these were correct. Then:

N; — D;

=N, _C “

We report results using the average Area Under MD-v/s-FA
Curves (AUC) for the 10 categories using 5-fold cross validation
on the entire data. Since the curve measures error of the system
being evaluated, the lower the area under the curve, the better the
performance.

4.2. Systems Used for Retrieval

Our hypothesis in testing the induced tree structures on an audio re-
trieval task was that the induced structures over the lower-level units
should improve over the performance of retrieval systems based on
the lower-level units alone.

We set up 2 baselines using 2 different lower-level unit estima-
tion schemes. The first baseline uses a Vector-Quantization approach
to quantize each audio frame into one of several clusters (we refer to
this system as VQ). The second uses an HMM-based lexicon learn-
ing scheme outlined in [1] to represent each audio file as a sequence
of acoustic units descriptors, where each such descriptor can span
multiple frames (we refer to this system as AUDs). Each audio file



is represented using a feature set of dimensionality equal to the num-
ber of units in the system, with the feature value for each unit being
its relative frequency of occurrence in the file.

We then induce the tree structures over the sequences of acous-
tic units produced by both the VQ and the AUD systems, and then
use the subsequent clustering to generate identifiers for the various
constituents. The audio files can be characterized using the relative
frequencies of these constituents (we refer to these systems as VQ-
Trees and AUD-Trees respectively). Finally, we can create an ad-
ditional pair of systems that combines the lower-level units with the
structure induction process, by concatenating the pair of feature vec-
tors (we refer to these as VQ-Comb and AUD-Comb respectively).

4.3. Random Forest Classifier

The audio retrieval requires us to predict whether each audio file be-
longs to a particular class or not. Hence, we train binary classifiers
for each of the 10 audio categories to predict whether a test file be-
longs to the class or not (one-versus-all). The experiments reported
employ a Random Forest [14] classifier for each category. While any
classifier could have been used for this task, we chose random forest
classifiers as they are resistant to overfitting. Random forests are an
extension of decision tree classification techniques, where the train-
ing process grows many trees instead of a single one, using held out
data is used to get an estimate of the error as trees are added to the
forest. The trees in the forest are grown as far as possible, and prun-
ing is not used. Given a new test file, each of the trees in the forest
returns a class label, which is used in a weighted vote to determine
the final predicted label. In our experiments, we use 500 trees. For
details of the training process, the reader is referred to [14].

4.4. Experimental Results

A comparison of performances using the different systems is shown
in Table 1. We obtained the best results when using 64 cluster centers
to cluster the constituent blocks of audio units. While we provide
tree-only results for our experiments, we note that retrieval based on
features from the induced tree alone is not expected to be better for
2 reasons. First, tree structures induced in an unsupervised manner
will contain considerable noise. Secondly, and possibly more impor-
tantly, even if ground truth labels were available, the higher a node
is in the tree hierarchy, the longer is its yield, and information avail-
able for such nodes in the training set decreases. The higher level
clusters are likely to be broader since we represent the wide range of
possibilities by a mapping onto a limited, finite set of clusters, thus
collapsing a varied set of concepts together and reducing the dis-
criminative properties of the true higher-level concept. Nonetheless,
we do expect that they would provide additional information, and
the results are consistent with this expectation. While the systems
using the induced tree structure information only do not outperform
the systems using lower level units only, the combination of the two
systems outperforms both the individual systems significantly.

We expect that the primary reason that the tree structure based
systems have limited success is due to the fact that they work with
the information provided by the lower level units and any error in
the estimation of those units is propagated, resulting in the semantics
captured being weaker than in a model that can jointly utilize both
the observed audio and the estimated units jointly to induce structure.
Developing such models remains a focus of our future work.

The fact that the combined systems outperform the individual
unit-based or tree-based systems (with consistent trends for both
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System Avg. AUC
vQ 0.214
VQ-Trees 0.246
VQ-Comb 0.194
AUD 0.174
AUD-Trees 0.181
AUD-Comb 0.169

Table 1. Comparison of the various systems on average AUC (lower
is better)

baseline systems) is promising, and shows that the induced structure
does capture additional semantics.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel unsupervised approach to induc-
ing tree structures for modeling higher-level semantic information
that can be applied for different tasks. We presented a unified frame-
work that hypothesizes that the observed acoustics map hierarchi-
cally to higher-level semantics, and that estimation of these seman-
tics directly from the audio in a task-agnostic manner could be used
to derive characterizations that could be appropriately utilized for
the specific task at hand.

We leveraged previous work in unsupervised text parsing as well
as acoustic unit estimation to generate hierarchical structures for au-
dio in an unsupervised setting. Presently, the semantic import of the
derived structures is unclear, since we do not have labeled data for
analysis of the estimated constituent boundaries or parse structures.
We expect to address this in future work by obtaining human judg-
ments for the induced structures. Annotations, thus obtained, can
then be used for comparison with other techniques such as the one
presented in [6] to compare the effects of methods that model higher
layers one layer at a time against methods that model the entire hi-
erarchy jointly as presented in this paper. We can further leverage
the automatically induced structures to obtain richer semantic anno-
tations for audio datasets in a less expensive manner, so that super-
vised or weakly-supervised methods become feasible in the future.
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