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ABSTRACT

Real world sounds are ubiquitous and form an important part of the
edifice of our cognitive abilities. Their perception combines signa-
tures from spectral and temporal domains, among others, yet tradi-
tionally their analysis is focused on the frame based spectral prop-
erties. We consider the problem of sound analysis from perceptual
perspective and investigate the temporal properties of a “footsteps”
sound, which is a particularly challenging from the time-frequency
analysis viewpoint. We identify the irregular repetition of the self
similarity and the sense of duration as significant to its perceptual
quality and extract features using the Teager-Kaiser energy operator.
We build an acoustic event detection system for “footsteps” which
shows promising results for detection in cross-environmental condi-
tions when compared with conventional approach.

Index Terms— Temporal modeling, HMM, Teager-Kaiser op-
erator, Acoustic event detection

1. INTRODUCTION

Conventional modeling of audio processing is dominated by the
short-time Fourier-spectral perspective in which one views the sig-
nificant audio features as arising out of a short-time linear Fourier
power spectrum analyzer. In audio signal processing this framework
endures, in part, because the human ear is considered as a frequency
analyzer [1]. The ubiquity is evident in the design and implementa-
tion of almost all coding, detection and recognition systems which
work with general audio as input. In fact, the perceptual information
in any audio signal is encoded in the temporal variation of the various
attributes of the signal. Short-time Fourier power analysis (STFA)
limits the domain of attributes to static Fourier power spectral fea-
tures within a short-time interval of 20-40 msec, while the temporal
variation of spectrum is limited to short-term time derivatives of the
STFA, computed via orthonormal polynomial interpolation involv-
ing centi-second level raw measurements [2]. This methodology
works for most components of speech, which is a slowly varying
signal (i.e., pseudo-stationary) with a known production model and a
hierarchical meta-structure imposed by language, but is found to be
inadequate, at times, in characterizing general acoustic events, e.g.,
gunshots, steps and many environmental sounds [3, 4], where such
assumptions are unjustified. Even within speech, unvoiced plosives
are not pseudo-stationary. Attempts to alleviate these weaknesses —
while acknowledged [5, 6] — have been sporadic.

We discuss the general problem of signal representation in the
context of a prototypical acoustic event (AE), the “footsteps” which
proved to be particularly challenging for classification and detec-
tion in the CLEAR campaigns [4, 7]. These were conducted on
sets of datasets recorded in meeting-rooms [4] and, in addition to
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“footsteps” , contain 13 AEs such as “applause”, “cup clinks”, “door
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knock”, among others. A sample “footstep” AE is shown in fig. 1.
It consists of repeated impulses and each impulse is followed by a
gradual decay, collectively called the peak. Each peak is produced by
an interaction of a foot or shoe with the ground surface. Moreover, it
is the series of such roughly similar peaks, irregularly separated and
interspersed with background sounds that gives rise to the perceptual
quality of a “footstep” .

Conventional STFA would fail to account for these perceptual
cues in at least two ways. The onset of the peak cannot be rep-
resented accurately due to the time-frequency uncertainty princi-
ple. STFA may be adequate for differentiating between audio sig-
nals with such impulsive onsets and signals where such characteris-
tics are absent but for differentiating between similar impulsive sig-
nals such as steps from two different people or between “footsteps”
and another audio class such as “applause”, the accurate represen-
tation of the relative onset time does become an important criterion.
Secondly, the short time interval is not long enough to account for
the long-term (> 100 msec) repeatability. Increasing the frame-
size to account for this will lead to unreliable estimates due to non-
stationarity of the signal at such time-scales.

Another technique to model such long term behaviour within the
short-time framework is leave it to the states in the hidden Markov
model (HMM) to model the temporal sequence of the events. Nev-
ertheless, a well-known limitation of the HMM is that the under-
lying Markov assumption constrains the state occupancy duration to
be exponentially distributed independent of the data distribution [8].
This problem is also accentuated with general audio signals as, when
compared with speech, such signals do not have a hierarchical lan-
guage model which could provide a high level description of the
audio signal.

In general, the idea of including temporal information into au-
dio processing system is not new. In [9], the authors suggest using
amplitude modulation features extracted in 1 sec analysis windows
for robust speech detection. This approach is motivated by previ-
ous studies that indicate that this type of information is explicitly
coded in the auditory cortex. The physiologically inspired analysis
approach for audio classification presented in [10] is based on an
advanced model of the auditory system. The authors propose mod-
eling of the neural response over analysis window of the same 1 sec
duration. Inspired by auditory scene analysis, a number of auditory
features based on temporal analysis of the waveform were derived
from amplitude histograms, amplitude onset maps, spectral and har-
monic profiles of the waveform in 1 sec window. These have been
shown to help in sound detection [11].

However, despite the recent success in neurophysiological and
magneto-encephalographic studies, much of the structure, mecha-
nism, and interactions of the stimuli in the auditory cortex remain
unknown.

In this paper we apply a perceptually motivated approach which
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Fig. 1 — The “footsteps” signal along with its smoothed Hilbert envelope
and its Fourier spectra.

consists of modeling analysis concepts that are important for hu-
mans to recognize sounds. We introduce two such concepts that
arise from temporal analysis of AEs: the irregular repetition of the
self similarity of the audio signal and the sense of duration [12].
This can provide the high level perceptual description of AEs de-
rived from long-term temporal analysis of audio signal. We should
note that, in general, audio signals may not exhibit the irregularly
repeating self similarity but the dimension of perceptual duration is
always present. We focus on organizing a perceptually motivated
representation model for the “footsteps” AE for the purpose of de-
tecting this sound against other AEs with the objective to generalize
the approach to other AEs.

2. ACOUSTIC EVENT DETECTION PROBLEM

In AE detection (AED) task we aim at processing the acoustic sig-
nals collected by a set of distant microphones and convert them
into symbolic descriptions corresponding to a listener’s perception
of the different sound events that are present in the signals and their
sources.

For meeting-room environments, the task of AED has already
been adopted as a semantically relevant technology in the European
CHIL project (2004-2007) and two international evaluation cam-
paigns. In the last evaluation CLEAR 2007 [4], five out of six sub-
mitted systems showed accuracies below 25%, and the best system
had a 33.6% accuracy. In most submitted systems the standard com-
bination of cepstral coefficients and HMM classifiers, widely used
in speech recognition, was exploited. One of the major problems of
such a low recognition rate is the presence of signal overlaps [13].
Another source of mistakes comes from mismatch conditions in
training and testing. In fact, the database used in CLEAR 2007
consists of interactive seminars that were recorded in several rooms
by different research groups (AIT, ITC, IBM, UKA, and UPC). The
cross-environmental effect in these recordings manifests itself in the
form of:

1. Different room impulse responses, different objects produc-
ing sounds and the way of their production.

2. Background noise.
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Class Labels UPCvs UPC | FBKvs FBK | UPCvs FBK | FBK vs UPC
applause 0.0 0.0 11.1 13.3
cup clink 0.0 0.0 69.4 4.7

chair moving 2.6 3.0 68.6 42.1

cough 1.5 0.0 13.9 23.1
door close 1.6 0.0 61.5 13.1
door open 0.0 0.0 63.9 96.7
key jingle 1.6 2.8 41.7 21.5
door knock 0.0 0.0 28.6 16.3

keyboard typing 1.7 0.0 60.0 15.2

laugh 4.7 0.0 19.4 48.4

phone ringing 0.8 0.0 19.7 25.0

paper wrapping 2.2 2.8 41.7 28.6
footsteps 1.2 0.0 76.3 80.8
Average 1.37 0.66 44.3 33.0

Table 1 — Experimental results in terms of EER measure

To demonstrate challenge of AED in mismatched conditions, we
show the recognition results obtained using two databases of isolated
AEs recorded at UPC [14] and FBK [15] meeting-rooms. Note that
the recorded sounds of the events do not overlap. Both databases
include 13 sound classes (excluding “unknown” class) and approx-
imately 50-60 sounds per each class. People who participated in
recordings took different places in the room during each recording
session.

The features consist of 12 Mel-Frequency Cepstral Coefficients
(MFCCs) including energy coefficient, extracted every 10 msec with
a Hamming window of 25 msec The resulting parameters together
with their first and second order time derivatives are arranged into a
single observation vector of 39 components. Cepstral mean normal-
ization is applied. Each sound is modeled by a 2-state full-connected
HMM and each state is represented by a GMM of 64 mixtures with
diagonal covariance matrix. The training was accomplished using
the standard Baum-Welch training procedure. For evaluation the
AEs were cut from the continuous audio according to the ground-
truth labels. Then the isolated audio segments were fed to each
HMM corresponding to a set of acoustic classes to perform Viterbi
decoding. We evaluate the recognition rate of each sound class in-
dividually. Applying Bayes’ rule and discarding the constant prior
probabilities for class and out-of-class AE, the likelihood ratio in the
log domain becomes:

A(z) =log P(z|\¢) — log P(z|\g) @)
The term P(z|A¢) is the likelihood of the utterance with observa-
tion vector x given that it is from the class model and P(z|\5) is the
likelihood of the utterance given it is from the corresponding out-of-
class or non-class model, where A = arg max P(z|A¢). The like-
AENC

lihood ratio is compared to a threshold © and the class model is ac-
cepted if A(z) > © and rejected if A(z) < ©. The likelihood ratio
essentially measures the degree to which the class model resembles
the test utterance compared to some non-class model. In our experi-
ments the decision threshold is set to obtain Equal Error Rate (EER)
performance between rejecting the true class and accepting the non-
class utterances. In table 1 we present the recognition results in terms
of EER corresponding to four different experimental scenarios. The
first two columns correspond to the case when training and testing is
performed using different chunks of the same database, either UPC
or FBK. The next two columns correspond to mismatched condi-
tions where training is performed using sounds from one database
and testing from another.

In matched conditions, the EER is relatively low (around 1%).



However, in mismatched conditions the EER increases drastically,
indicating the fallout from the cross-environmental effect that is
present in the rooms in form of noise and reverberation. Also, the
intra-class variation of sounds plays a crucial role for sound recogni-
tion. In fact, “footsteps” is one of the classes that showed the highest
error-rate, which is in line with the results from CLEAR 2007 [4].

3. SIGNAL SHAPE AND SELF SIMILARITY

In a broad sense we define shape as the evolution, the dynamics of
signal parameters along time. If a signal does not change along with
time, we could say that it has a constant shape. The basic question
is: the evolution of which parameters need to be taken into account
and over which time-scales to define signal shape. We address this
from a perceptual point of view.

The perceptually identifying features of a “footstep” include a
distinctive asymmetric peak shape due to the sudden rise, because
of the contact of the foot with the ground, and a gradual fall, mainly
because of the room impulse response. The peak duration is con-
strained to be in the vicinity of 100-200 ms and if we change this du-
ration —for example by randomly changing the Fourier phase while
keeping the Fourier power spectra constant for frame durations > 70
msec or < 10 msec —the changed sounds are no more recognized
as “footsteps” .

Similarly, the minimum duration of the background sound be-
tween two successive peaks is perceptually important to the “foot-
steps” sound. For almost all sounds in the database, this interval
of repetition is between 0.4-1 sec If we change the position of the
peaks so that the repetition rate lies outside this range the perception
changes —the sound is perceived as “door knock”™, if rate is less than
0.3 sec, and as disjointed strikes if the rate is more than 1 sec.

Estimation of the above temporal parameters requires energy
estimates that give local measurements while preserving long term
trends. In fig. 2, we show a self-similarity plot of MFCC, AMFCC
and AAMFCC which is obtained by calculating the reciprocal of the
Euclidean vector distance between frames. The grayscale intensity
gives the similarity between frames centered at time location on the
x-axis and y-axis. We notice that there is only a single prominent line
at the main diagonal indicating self-similarity at zero lag 7, which
does not provide any information. Thus MFCCs do not represent the
long term self-similarity of the signal or the onset of the peaks.

With the failure of the frame based spectral approach, we turn
to instantaneous energy measurements to characterize its shape. The
Hilbert envelope provides one such measurement of the signal en-
ergy through the Hilbert transform [16].

We extract the Hilbert envelope, |x4(t)], of the signal x(¢) [16]
and then low pass filter it at 20Hz to obtain the smoothed tempo-
ral envelope, Teny(t), of the signal. This is shown in fig. 1 for the
“footsteps” signal. The repeatability of the “footsteps” sound can
be demonstrated with autocorrelation function, 7., .], of Hilbert en-
velope Zeno(t) shown in fig. 4, where the energy in each frame is
normalized before calculating the autocorrelation as follows:
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Where z[n] is the sampled z(t), L is the frame duration and M is the
frame shift. In fig. 4, the “footsteps” demonstrate a self-similarity
at 0.6 sec seen clearly with a diagonal starting at this point. The
contrast improvement in fig. 4 over that of fig. 2 is also obvious. We
also observe that the diagonal lines are blurred at certain points.
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The Teager-Kaiser energy operator (TKEO) [17] provides an un-
conventional perspective on the instantaneous energy of a signal. It
relates energy to square of the signal amplitude and the square of its
frequency. The discrete instantaneous energy, 1k go[n] given by
TKEO is:

(3)

rrrpoln] = z*[n] — z[n + 1)z[n — 1]

Fig. 5 shows the autocorrelation of the smoothed TKEO energy of
the signal using the definition in eq. (2), which is a marked improve-
ment over the Hilbert envelope in fig. 4. Hilbert envelope brings out
the apparent self-similarity, but its focus is only on the signal am-
plitude, which leads to a less sharp representation. TKEO provides
the most crisp representation of this self-similarity which is robust
against intra-class variations in “footsteps” because it includes in-
stantaneous frequency, in addition to signal amplitude, in the energy
estimate —combining the local and long-term measurement in a sin-
gle estimate.
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Fig. 3 — Distribution of different
AEs with similarity features Fy
and F> for UPC database.

Fig. 2 — Autocorrelation function of
a “footsteps” sound using MFCC,
AMFCC and AAMFCC
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4. ACOUSTIC MODELING

4.1. Waveform self-similarity features
According to our perceptual observations, the discriminative char-
acteristic of the “footsteps” AE in the time domain is the irregular
repetition of certain self-similarities. One can notice that other AEs
also exhibit the repetitive behavior: “applause” consists of the series
of hands clapping; “door knock” consists of the successively hitting
the door with human hand, etc. The basic concept behind repetition
estimation is the similarity measurement.

We define similarity in terms of autocorrelation 737 ¥ of en-
ergy measurement from TKEO, where M / Fs = 10 msec, L/Fs =
800 msec and F,=16KHz is the sampling rate. We compute two



features: Fi[n] and F>[n] that represent the degree of the wave-
form self-similarity in short and long intervals, respectively. The
feature Fi[n] represents the maximum of the autocorrelation func-
tion for a frame centered at n within a time lag of 0.2-0.4 sec, i.e,

Fi[n] = maxrif ¥¥°[n,n + Fs1] where 71 € [0.2,0.4] sec and
T1 ’

Fs[n] is for the same frame within a time lag of 0.4-0.9 sec, i.e,
Fs[n] ATKEO[n, n + Fs12] where 72 € [0.4,0.9] sec.

=maxry;
T2

In fig. 3 we show the distribution of AEs in the UPC database
using features F; and F>. As one can expect, the “footsteps” exhibit
low short-term degree of self-similarity and high degree of long-term
self-similarity. Events such as “applause” show high degree of self-
similarity in short and long terms. On the other hand, features F}
and F5> show low degree of self-similarity for the AEs that are not
repetitive like “door close”.

4.2. Explicit duration HMM

For AE modeling we use HMM as a ready model for temporal
characterization. HMMs incorporate the inherent temporal structure
of audio and have shown to be particularly powerful in modeling
sounds in which temporal structure is important, such as speech.
Ergodic (full-connected) or left-to-right topologies can be chosen
for general AEs. In either case, a well-known limitation of the
HMM is that the underlying Markov assumption constrains the
state occupancy duration to be exponentially distributed according
to P(d) = (1 — as)a®", where d is the duration, and a;; is the
self-transition probability.

Fig. 6 — State alignments of “footsteps” AE.

In fig. 6 we show the waveforms of “footstep” AE together with
its Viterbi state alignment that was obtained using ergodic 2-state
“footstep” HMM applied to this AE (1 and 2 are the two states of the
HMM model). The first state corresponds to the impact sound con-
stituting the “footstep” and another state corresponds to the back-
ground sound between two successive peaks. We note that the du-
ration occupancy in each of these two states has certain temporal
constraints. Up to 0.2 sec, the “footsteps” sound occupies the first
state and then for the interval 0.4 - 0.9 sec, it remains in the second
state. We model these constraints for “footsteps” AE using Fergu-
son’s explicit duration HMM (EDHMM) [8]. No state in EDHMM
in fig. 7 has self transitions, hence direct modeling of per-state dura-
tion distributions using state transition probabilities parameters («,
Bi, 7i, 0;) becomes possible. In fig. 7 all states marked with the same
number (1 or 2) have the same observation probability distributions
but the transition probabilities between states monotonically change
from left to right: «’s and +’s decrease and (3’s and 4’s increase.

4.3. Experimental Results

The detection results for the “footsteps” AE are presented in fig. 8.
We used two approaches to incorporate the irregular repetition and
the sense of duration analysis concepts: feature level fusion and
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Ergodic HMM

Fig. 7 — Ergodic and explicit duration HMM

EDHMM modeling. These approaches are compared with the base-
line results for “footsteps” in table 1.

In feature level fusion, the features F and F5 are appended to
the initial 39 MFCCs to form the composite 41-dimensional feature
vector. In EDHMM the “footsteps” acoustic model is built as de-
scribed in section 4.2. The estimation and inference of EDHMM pa-
rameters is performed using the forward-backward algorithm within
the allowable duration intervals —chosen from previous perceptual
observations to be 0.01-0.2 sec for peak and 0.4-0.9 sec for back-
ground sound between peaks. Note that both EDHMM and the base-
line ergodic 2-state HMM have the same observation distributions in
the corresponding states; the only difference between models lies
in the transition probabilities between states. We achieved 14% of
EER reduction in the case of feature level fusion approach and 27%
of EER reduction in the case of EDHMM in cross-environmental
scenario. Owing to our construction of EDHMM and the design of
features, the error rate reduces significantly mainly because the tem-
poral information, expressed in the form of long-term energy evolu-
tion, is less sensitive to the cross-environmental effects presented in
different rooms.
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Fig. 8 — Comparison results for “footsteps” AE.

5. CONCLUSIONS

In this work we proposed two concepts that arise from temporal
analysis of AEs: the repetition of the self similarity of the audio
signal and the sense of duration. These concepts are incorporated
at feature and signal model level for detection of “footstep” audio
signal. These signals do not conform to the assumptions underly-
ing the STFA-HMM paradigm which has its roots in speech recog-
nition. The TKEO operator allowed us to represent the repetition
accurately as it calculates energy as a functions of amplitude and
frequency while we used EDHMM to model the duration of these
repetitions. The results indicate a significant improvement over the
state of the art for the “footsteps” signal in cross-environmental de-
tection task. This signal representation and modeling framework is
general enough to allow extension to other acoustic event classes,
which we plan to pursue in a future work.
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