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ABSTRACT 

 

In this paper, we propose an effective discriminant 

subspace learning framework to recognize the environmental 

sounds. Firstly, Gabor transform is adopted to characterize 

the time-frequency distributions of environmental sounds. 

We further encode the prominent time-frequency patterns 

with low rank representation by extracting the subspace from 

Gabor spectrogram. Unlike conventional sound recognition 

schemes that are mostly based on acoustic feature vectors, 

we treat the acoustic subspaces (matrixes) as basic elements 

for recognition, retaining rich temporal-spectral contextual 

information. At recognition stage, we employ kernel Fisher 

discriminant analysis to effectively exploit the class 

conditional distributions of environmental sounds which are 

favorable for performing multi-class classification. With a 

well developed kernel function, the proposed approach 

achieved superior recognition performance on RWCP sound 

scene database, compared with the existing methods.  

Index Terms— Environmental sound, Gabor transform, 

subspace learning, kernel fisher discriminant analysis, 

canonical angle, RWCP Sound Scene Database 

1. INTRODUCTION 

 

Speech and music are the most informative sounds for 

human perception and have been extensively investigated for 

more than half a century. On the other hand, in real-world 

auditory scenes, apart from speech and music, there are 

various non-speech sounds carrying prominent information 

for human perception, such as phone bell, the glasses sounds 

and even alarms. These environmental acoustic events play 

important role in awareness of auditory context and could be 

widely applied in human-machine interaction, robotics and 

surveillance, etc.  

The goal of environmental sound analysis is to retrieve 

significant information from auditory scenes. In recent years, 

more studies have been issued to challenge the 

environmental sound recognition task [1]. Based on the 

studies on speech recognition, modern environmental sound 

recognition systems are basically formulated into two stages: 

feature extraction and classification. At acoustic feature 

extraction stage, due to the wide non-stationary time-

frequency variations, conventional speech features, such as 

Mel-frequency cepstral coefficients (MFCCs), are no longer 

favorable for characterizing environmental sounds. Various 

advanced signal processing techniques have been examined, 

such as Gabor and wavelet transforms [2]. Recently, 

Matching Pursuit (MP) [3] and non-negative matrix 

factorization (NMF) [4], the techniques that produce the sets 

of basis to form approximate signal representations, have 

been introduced for environmental sounds feature extraction 

and achieved some improvements in recognition 

performance. At recognition stage, conventional classifiers, 

such as Gaussian mixture models (GMM) [5], artificial 

neural networks (ANN) [6] and support vector machine 

(SVM) [7] have been evaluated for classifying 

environmental sounds. Some recent research revealed 

hidden Markov models (HMM) with multiple hidden states 

presents higher recognition accuracy than other classifiers 

[8]. There are also some proposals integrated several 

classification methods to make further improvement [9]. 

This study addresses the content based recognition on 

environmental sounds. Based on the survey above, we 

outline the contributions of this work by comparing with 

previous works:  

1. We formulate the environmental sound recognition 

problem by subspace learning. The acoustic subspaces 

(matrixes) are treated as basic units for classification, thus 

the rich time-frequency inter-frame contextual information 

can be portrayed by subspace representation. Conversely, 

conventional sound recognition systems always employ the 

vector-based schemes. The feature extraction procedures are 

mainly carried out within the analysis frame and such 

scheme leads to deterioration in inter-frame temporal-

spectral contextual information, such as in MFCCs. 

Although the first and second order derivations of MFCCs 

over time can be adopted to describe the inter-frame 

dynamics, the information loss at feature extraction stage 

cannot be fully compensated. 

2. We adopt kernel Fisher discriminant analysis (KFDA) 

[10] for environmental sound recognition. Kernel methods 

have been extensively studied in machine learning and 

computer vision fields for decades due to their excellent 

performance in non-linear classification. For environmental 
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sound recognition, the most applied method is SVM, which 

addresses separating the samples through building optimal 

non-linear hyper plane corresponding to the labels of the 

data. Nevertheless, the class conditional distributions are 

ignored by SVM, which are preferred for multi-class 

classification. We therefore introduce KFDA scheme to 

effectively exploit the class conditional distributions to 

produce the optimal projection kernel feature space for 

conducting multi-class environmental sound recognition. 

Particularly, as for dealing with the acoustic subspace 

(matrix), we develop mutual subspace canonical kernel to 

effectively explore the distances between environmental 

sounds. The proposed discriminant analysis framework and 

kernel function performed well in experimental evaluation. 
 

2. PROPOSED ENVIRONMENTAL SOUND 

RECOGNITION SCHEME 

 

There are two major components in the proposed kernel 

discriminant recognition framework. The first is the feature 

extraction phase in which the audio data is transformed into 

subspace representation. Subsequently, at discriminant 

classification stage, we employ KFDA analysis to 

characterize the class conditional distribution and map the 

data into kernel discriminant feature space which is 

favorable for performing classification. Fig. 1 shows the 

schematic diagram of the proposed approach. Each step will 

be explained explicitly in this section. 

 

Indexing input sound by the type of the nearest 

reference sound in kernel discriminant space

Training KFD projector

Input audio subspaces

Input environmental sounds Reference environmental sounds

Searching for the 
nearest reference 
sound in F

Reference audio subspaces

Gabor Spectrogram

bell

wood

Gabor Spectrogram

KFD projection

F

Feature extraction

Recognition

 

Fig. 1. Chart flow of the proposed framework 

2.1. Environmental Sound Feature Extraction 

 

Effective feature extraction is determinative to realize fine 

recognition performance. In here, we explain our feature 

extraction procedure and clarify the considerations. 

Comparing with speech, environmental sounds manifest 

two fundamental differences: (1) Speech presents formant 

structures while environmental sounds do not exhibit such 

characteristics. (2) Speech is stationary signal with stable 

frequency distribution in short time, whereas most 

environmental sounds are non-stationary with wide 

temporal-spectral dynamics. Based on these two properties, 

we select Gabor transform for to characterize the non-

environmental sounds.  

Gabor transform is an effective time-frequency analysis 

tool for investigating acoustic signal which can be expressed 

as: 
1

( , )

0

{ ( )} [ ]w[ ] .
N

j n

n

G x n x n n e 

  






             (1) 

where x[n] is the signal to be analyzed, w[n] denotes the 

Gaussian window function over the framed signal with 

length N. Comparing with short-time Fourier transform, 

Gabor transform enables best simultaneous resolution in 

both time and frequency domains. 

Subsequently, we encode the Gabor spectrogram with 

subspace representation. Low-rank subspaces can 

empirically approximate the structural distribution of the 

data as well as the variations, hence has been successfully 

applied in computer vision field [11], i.e. to express a set of 

images of face under varying lighting conditions and poses. 

In this study, we adopt subspace to describe acoustic signal 

based on two motivations: first, subspace representation 

effectively characterizes the prominent temporal-spectral 

distributions in audio data and discards the minor patterns, 

which are mostly noises in sounds, simultaneously; second, 

benefited from the much lower feature dimension, 

processing acoustic subspace is more efficient compared to 

dealing with raw feature vectors (Gabor spectrogram). We 

explain the procedure of extracting acoustic subspace as 

follows. 

Let 1 2[ , , , ], ( 1, , ) F

T tG g g g g t T   denote Gabor 

spectrogram, t denotes the frame indexes and F stands for 

frequency coordinate. To formulate the Gabor spectrogram 

with subspace representation, we calculate eigenvalues 

1
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where , (1, , )
t

g t T   is the transpose of gt.  

U = [u1,…,uF] span the acoustic subspace character-

izing the time-frequency distributions of sound. The 

contribution ratio of eigenvector uf in U is defined as: 

1
,

F

f f ii
  

                          (3) 

which denotes significance of corresponding eigenvector for 

expressing the audio data. The eigenvectors are ranked by 

their contribution ratios in the decreasing order. We can 

select the first K principle eigen vectors with higher 

contribution ratios and employ the subspace UK = [u1,…,uK], 

1 < K < F to express the main acoustic patterns. In addition, 
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the principle eigenvectors in UK are normalized by their 

contribution ratios through 
1

, 1, , ,
K

k k i ki
u u k K 


    in a 

similar manner to [12]. The contribution weightings give 

prominence to the principle eigenvectors in describing audio 

data. Based on the procedures explained in this section, we 

extract acoustic subspaces from sounds. 
 

2.2. Kernel Fisher Discriminant Analysis 

 

In this section, we introduce the kernel Fisher discriminant 

analysis [10] that effectively characterizes class conditional 

distributions for environmental sound recognition.  

Let Xi = { 1 ,
i

i i

Nx x } be audio samples from class i. 

( )x  is the nonlinear mapping of the input vector x into 

kernel feature space . Kernel Fisher discriminant seeks the 

direction w∈ maximizing the Rayleigh quotient as: 
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Because the solution is determined by scalar products 

only, instead of mapping the data explicitly to , the kernel 

trick is employed to compute these dot products, i.e. 

( , ) ( ( ) ( )).k x y x x    Many kernel functions have been 

developed, the most applied one is the Gauss kernel 
2

( , ) exp( / )k x y x y    . Then, the w can be represented by 

the linear combination of training samples as: 

1

( ).
N

n n

n

w a x


                          (8) 

Consider the formula in expansion (4), we have  
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where we express 
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dot products by kernel function. Based on (9), the 

representation in (4) can be rewritten as 
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i nj n jK k x x I is identity matrix and 1Ni is the matrix 

with all 1/Ni entries. The maximum J can be obtained by 
1

1 2( )a  N M M . The projection of input feature x onto w is 

given by 
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Thus, we obtain the projected data without mapping to .  

Kernel function determines the mapping feature space, 

which is critical for making classification. In this study, we 

treat the acoustic subspaces as basic elements. That means 
i

n
x  is matrix, i.e. with f×k dimension. To investigate the 

subspace distance, we develop mutual subspace canonical 

kernel. We exhibit the details as follows.  

Let two acoustic subspaces denoted by , .f kx y  We 

employ canonical angles to measure the distances between 

them [13], which is defined by: 
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where up is the eigenvector of x and vp is the eigenvector of y. 

10 2p       are the canonical angles between two 

subspaces. We adopt the minimum canonical angle for 

measuring the difference between the acoustic subspaces, 

which is defined as:  

1min_ ( , )angle x y                           (13) 

Then, the proposed mutual subspace canonical kernel can be 

written as:  
2

( , ) exp( min_ ( , ) / )k x y angle x y            (14) 

Based on the proposed kernel function and discriminant 

learning scheme, the class conditional distribution can be 

effectively exploited. Based on the projected data 

representation, we employ nearest neighbor (NN) scheme 

with cosine distance to classify the input sound in the kernel 

discriminant feature space. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

To evaluate the proposed framework, we conduct 

environmental sound recognition experiments using real-

world database. In this section, we demonstrate the 

experimental validation procedure and present the results.  

 

3.1. Experimental Setup 

 

3.1.1. Dataset 

We employ Real World Computing partnership’s (RWCP) 

sound scene database [14] to evaluate the proposed scheme. 

The RWCP database includes 105 types of environmental 

sound generated by 3 categories of sound sources: collision, 

action and characteristic sound sources. There are 9722 

recording samples with the length ranging from about 1 

second to several seconds. The sound clips were recorded 

with 48 kHz sampling rate and 16bit resolution.   

3.1.2. Parameters selection 

In the proposed framework, there are some parameters to be 

settled in advance. The short-time analysis window was 

fixed to 10ms with half size overlapped. We examined the 

contribution ratios of eigenvectors in acoustic subspace by 
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function (3) to determine the subspace dimension. Fig. 2 

illustrated the contribution ratio distributions over 

eigenvectors of 4 types of environmental sounds. The chart 

manifested the acoustic characteristic can be effectively 

conveyed by first several eigenvectors.  The acoustic 

subspace dimension selection was investigated based on 

experiments. The spread parameter  in kernel function was 

set empirically to 3.4.  

china cup doorlock stapler

 

Fig. 2. Contribution ratios of first 60 eigenvectors in the 

subspaces of 4 kinds of environmental sounds 

 

3.2. Experiments and Results 

 

Two experiments have been conducted. The first was in the 

interest of manifesting the separability of the proposed 

approach. Subsequently, we validated the proposed scheme 

over full RWCP sound scene database with large amount of 

environmental audio data. 

 

3.2.1. Validation of sound class separability of the proposed 

discriminant analysis scheme 

Distinct between-class distances along with low within-class 

distances are demanded for achieving favorable recognition 

performance, which is presented by separability. We 

selected 12 classes of environmental sounds from RWCP 

database to verify the separability of the proposed scheme. 

The selected sounds consisted of impulsive sounds of wood, 

book, metal, glass cup, coins, hands clapping, dices, drum, 

doorlock and the sustaining sounds of particle dropping, 

spray and phone beeping, which are the same as the data 

used in [8]. Each sound class included 100 samples. We 

conducted 10-folder cross-validation on the selected dataset. 

For each type of sound, 90 samples were used for training 

and the remaining 10 clips were for testing. Fig.3 portrayed 

the pairwise cosine distance matrixes of training sounds in 

original feature space and kernel discriminant space. The 

gain in class separability by using the proposed framework 

can be clearly observed. The within-class distances depicted 

by 90×90 diagonal blocks are very small (in cold color) and 

the between-class distances on all other positions are much 

bigger (in warm colors) by contrast. We examined the 

recognition rates corresponding to the sound subspace 

dimension variations. The results in Fig. 4 manifested the 

highest recognition rate of 99.16% was achieved by 

adopting the first 2 principle eigenvectors to construct the 

sound subspace. The proposed approach outperformed the 

method in [8], which presented a recognition rate about 93% 

by using Matching Pursuit over Gabor features and HMM 

classifier on same dataset.   

 

   

(1) Primitive feature space                    (2) kernel discriminant space  

Fig. 3. Distance matrixes comparison of training data 

 

 
Fig. 4. Recognition performances versus different acoustic 

subspace dimensions 

 

3.2.2. Validation of the proposed approach over full RWCP 

sound scene database 

In the last experiment, our method achieved promising 

recognition performance on 12 categories of environmental 

sounds. In this part, we evaluated the proposed approach 

over full RWCP sound scene database with 105 sound 

categories and 9722 sample clips. We set the acoustic 

subspace dimension to 2 based on the last experiment. 

Finally, we achieved 94.41% recognition rate in 10-folder 

cross-validation. Besides, there are some duplicated 

categories in RWCP sound scene database, i.e. there are 4 

kinds of phone rings and 5 types of bells. After merging the 

duplicated categories, we obtain 62 categories for 

classification, and the recognition rate reached to 96.67%.  

 

4. CONCLUSIONS 

 

An effective environmental sound recognition scheme is 

proposed in this study. At feature extraction stage, Gabor 

transform was employed to characterize the time-frequency 

distributions of environmental sounds. We further 

formulated the Gabor spectrogram with low rank subspace 

representation. The kernel Fisher discriminant analysis was 

applied over acoustic subspaces to characterize the class 

conditional distributions which are favorable for multi-class 

recognition. Experimental results over real world dataset 

validated the effectiveness of the proposed framework.  
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