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ABSTRACT

There is much evidence to suggest that the human auditory sys-
tem uses localised time-frequency information for the robust recog-
nition of sounds. Despite this, conventional systems typically rely on
features extracted from short windowed frames over time, covering
the whole frequency spectrum. Such approaches are not inherently
robust to noise, as each frame will contain a mixture of the spectral
information from noise and signal. Here, we propose a novel ap-
proach based on the temporal coding of Local Spectrogram Features
(LSFs), which generate spikes that are used to train a Spiking Neural
Network (SNN) with temporal learning. LSFs represent robust lo-
cation information in the spectrogram surrounding keypoints, which
are detected in a signal-driven manner such that the effect of noise
on the temporal coding is reduced. Our experiments demonstrate the
robust performance of our approach across a variety of noise condi-
tions, such that it is able to outperform the conventional frame-based
baseline methods.

Index Terms— Sound recognition, neural coding, local features

1. INTRODUCTION

The task of recognising sounds in noisy and unstructured environ-
ments is a major challenge faced by the audio processing field [1].
Recently there has been renewed interest on the topic of “machine
hearing” [2], where the aim is to be able to achieve human-like
recognition performance across a wide range of sounds and signal-
to-noise ratios (SNRs). Conventional approaches are typically
“frame-based”, which models the acoustic signal as a series of fixed
dimension features extracted from each time frame of the continu-
ous audio. The most commonly used features are Mel-Frequency
Cepstral Coefficients (MFCCs) [3], which are often modelled using
Gaussian Mixture Models (GMMs), with the temporal information
captured using Hidden Markov Models (HMMs).

However, there are two significant drawbacks of such frame-
based approaches. Firstly, sounds display a wide variety of spectral
characteristics, with many examples that contain relatively sparse
frequency spectrums with most energy contained in a few frequency
bands. When noise is present in the signal, the noise will mask the
spectral information of the sound in certain regions of the spectro-
gram, through the LogMax principle [4], with each frame containing
a mixture of information from both the noise and sound. This can
cause the frame to become arbitrarily far from the GMM trained on
only clean instances of the same sound, and hence significantly re-
duce the performance. Secondly, typically HMMs do not explicitly
model the temporal coding of the underlying frames. Instead, they
rely on a first order model, based on the transition probability from
the previous frame. However, sounds have a much more diverse
temporal dependency, such that a more complete modelling of the
temporal information should improve the performance.
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Fig. 1. Overview of the proposed LSF-SNN recognition system,
compared to traditional auditory methods such as the Gammatone
Cepstral Coefficients (GTCC).

In this paper, we propose the novel LSF-SNN approach for
sound recognition, based on the temporal coding of Local Spec-
trogram Features (LSFs), using a spiking neural network (SNN)
with temporal learning for recognition. In a previous work [5], we
utilised the idea of LSFs for overlapping sound recognition using the
Generalised Hough Transform for sound source separation. Here,
our purpose is to develop the LSF into a biologically inspired sys-
tem for robust sound recognition, which is a departure from our
previous work. The idea here is that even when noise is present,
we can extract a reliable LSF from the spectral region surrounding
“keypoints” which are detected on the sparse, high SNR peaks in the
two-dimensional sound spectrogram. These keypoints are detected
in a signal-driven manner that is independent of the sound class
or noise condition, such that a temporal coding based on these key-
points will be robust when noise is present. To generate the temporal
code, our solution is to model characteristic representations of the
LSF information in an unsupervised manner using Self Organising
Maps (SOM) during training [6], which can be seen as an tonotopic
(frequency ordered) mid-level representation of the sound informa-
tion. The Best Matching Unit (BMU) of the SOM then generates a
spike at the time that the keypoint occurred to form a spatiotemporal
spike pattern, which can be learnt in an SNN for recognition of the
underlying sound. An overview of this system is found in Fig. 1.
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Fig. 2. The proposed LSF-SNN system. First we detect keypoints and extract LSFs, followed by the SOM mapping to produce the output
spatiotemporal spike patterns. The weights, wi,c are then learnt by a SNN using Tempotron learning for recognition.

Our motivation is based on biological evidence, that suggests
the human auditory does not process acoustic information in such
a frame-based way. Rather, it has been suggested that the auditory
system processes audio in local frequency bands, such that it can
recognise noise corrupted audio based on local time-frequency re-
gions with high SNR [7, 8]. This forms the idea for using the LSF
as our mid-level representation, as it captures only the local spectral
information, which is more robust to noise than a frame-level repre-
sentation. In addition, it is known that neurons communicate with
each other by means of short spikes, thereby representing external
stimuli in the brain in a form of spatiotemporal spike patterns [9].
In some cases neurons are commonly assumed to represent infor-
mation by mean firing rate, however neurons in both the visual [10]
and auditory [11] pathways are observed to precisely respond to the
stimulus on a millisecond timescale [12]. These results support the
hypothesis of temporal coding, where precise timings of spikes are
taken into account for conveying information.

However, while many previous works have considered a bio-
logically inspired auditory front-end, such as the Gammatone fil-
terbank [13], most have simply fallen back on the traditional pat-
tern recognition approaches such as the Gammatone Cepstral Coef-
ficients (GTCC) in [14], rather than creating a more complete biolog-
ical system as we have focussed on here. Others have also utilised
the properties of SOMs for speech recognition, [15], for example
by utilising the BMU-trajectory, and have used SNNs for biologi-
cally inspired sound recognition [16]. However, these approaches
often do not consider the recurring problem of robustness to noise,
and have also not been combined in such a way as the novel system
presented here. Other works have also utilised keypoints in the spec-
trogram, particularly for music identification such with the Shazam
system [17], which hashes together pairs of keypoints as the basis for
recognition. However, the approach does not extract a local feature,
and in addition it has been shown in [18] that such a system is not
well suited to general sounds, due to the precise nature of the fea-
tures that may not be reliably repeated. Therefore, in this paper we
compare our approach to a conventional frame-based MFCC-HMM
system for noise-robust recognition using missing features. Our ex-
periments demonstrate the robustness of our approach compared to
this well-performing baseline technique.

The rest of this paper is as follows: Section 2 details our
proposed LSF-SNN approach for learning spatiotemporal patterns
based on LSFs. Section 3 then describes the experiments used to
validate our approach, before Section 4 concludes the work.

2. PROPOSED LSF-SNN SOUND RECOGNITION SYSTEM

2.1. Signal-driven Local Spectrogram Feature Extraction

We start be representing the audio signal as a log-power Gammatone
spectrogram, S(f, t), where f = 1 . . . F is the centre frequency of
the Gammatone filter and t is the time frame after down-sampling
the spectrogram into 16ms frames with 50% overlap. We use audio
clips with a 16 kHz sampling frequency, and F = 50 filters spaced
equally on the Equivalent Rectangular Bandwidth (ERB) scale.

The basis for both our keypoint detection and LSF extraction is
the plus-shaped local spectrogram region, which we show on the left
of Fig. 2. The idea is to capture the local spectral and temporal
shape, such that it gives a “glimpse” [8] of the local spectral infor-
mation in two dimensions. We found previously [5] that this is more
suitable than including the full 2D region, which may contain a sig-
nificant amount of non-stationary noise. The plus-shaped region is
composed of the local horizontal and vertical spectrum, as follows:

Qf (y) = S(f ± d, t), d = [1, 2, . . . , D]

Qt(y) = S(f, t± d)
(1)

where Qf , Qt are the local spectral and temporal vectors respec-
tively, y = [1, 2, . . . , 2D] is the vector index, and D = 6 is the
half-width of the local region, which we found was small enough
to extract the important local peaks, but large enough to provide a
feature for clustering and classification.

Keypoints are then detected at locations that are local maxima
across either frequency or time, which ensures they can be detected
on both short impulsive sounds that appear as vertical lines in the
spectrogram, as well as on harmonic sounds that appear as horizontal
lines. A keypoint is then detected if:

S(f, t) >

{
Qf (y), or ∀y = [1, 2, . . . , 2D]

Qt(y).
(2)

The output is a set of keypoint information, Ki, as follows:

Ki = {fi, ti, si, Li,Mi} (3)

where fi, ti are the time-frequency coordinates, si = S(fi, ti) is the
spectral power, and Li,Mi are the LSF and missing feature mask
respectively, which are detailed below.

The LSF is formed by concatenating Qf,i and Qt,i, such that it
represents the plus-shaped local region, hence we call this the +LSF.
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This is normalised by the spectral power, si, such that the +LSF, Li,
is written as follows:

Li =
{Qf,i, Qt,i}

si
(4)

The +LSF hence characterises the local spectral shape, independent
of the relative magnitude of the sound, which leads to a more com-
pact set of LSF representations, as similar patterns of different mag-
nitude can be clustered together.

Next, we generate a local missing feature mask [19] for each
+LSF to prevent noise from affecting the matching of LSFs between
training and testing. To estimate this we assume that the noise will
be stationary in the local region across either the spectral, Qf,i, or
temporal, Qt,i, dimension. The local noise estimate, µi, is then sim-
ply the minimum of the two means, as follows:

µi = min [mean(Qf ), mean(Qt)] . (5)

The missing feature mask, Mi, is then formed as follows:

Mi(z) =

{
1, for Li(z) > µi

0, otherwise.
(6)

where z = 1 . . . 4D is a variable representing the +LSF dimensions.
Finally, we define a local sparsity measure, δi = si − µi, to re-

ject less significant keypoints that are more likely to belong to noise
rather than signal. Here, δi controls the minimum size of the peak
for it to be significant, which we set to δi > 5dB based on pre-
liminary experiments. This reduces the computation required during
recognition, and reduces the chance of a false match occurring due
to fluctuations in the noise.

2.2. Temporal Coding of LSFs using Self Organising Maps

During training, we perform LSF clustering on the extracted key-
point information, Ki, to learn clusters of similar input features. In
our previous work [5], we used k-means clustering. However, here
we choose to use Self-Organising Maps (SOM) [6], which is an un-
supervised, biologically plausible competitive learning process. We
do this as the trained SOM contains ordered clusters, due to its neigh-
bourhood learning rule, which we use to produce the tonotopic or-
dering of the neurons that is seen in the human auditory system [20].
We do this by appending the keypoint frequency information, fi, to
the feature to give L′

i = {Li, fi}, which enables the SOM to pro-
duce a tonotopic topology. An example of the learnt tonotopic map is
shown in Fig. 3a, with the frequencies arranged in ascending order.

We use the SOM Toolbox for Matlab [21] for the learning pro-
cess, with the SOM set to have a rectangular map of size N =
50 × 10 units, and a Gaussian neighbourhood function. To calcu-
late the Best Matching Unit (BMU), bj , of the SOM, X , we use the
squared Euclidean distance measure between the input vector, L′

i,
and each unit’s pattern, xn. This is weighted by the masking func-
tion, Mi, extracted from each keypoint, and can be written as:

bj = min
n

[
(xn − L′

i)
TM−1

i (xn − L′
i)
]
, ∀n ∈ X (7)

The BMU, bj , represents the occurrence of the +LSF, L′
i, at time

ti specified by the position of the keypoint, Ki. Over all the key-
points detected in the spectrogram, this generates a spatiotemporal
spike pattern, P (b, t), where each keypoint-BMU match generates a
spike by setting P (bj , ti) = 1 The output of the SOMs forms the
spatiotemporal spike pattern as shown in Fig. 2. The pseudo code
for the temporal coding can be written as shown in Algorithm 1.
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(left) with the corresponding spatiotemporal spike pattern
shown below to demonstrate the noise robustness.

Fig. 3. Examples of the SOM mapping and spatiotemporal patterns.

Algorithm 1 Temporal Coding of LSFs
Generate a Log-power Gammatone spectrogram: S(f, t)
Extract set of keypoints: Ki = {fi, ti, si, Li,Mi}.
Reset the spatiotemporal spike pattern, P (b, t)⇐ 0
for all Ki do

Find BMU, bi, for [L′
i,Mi], in SOM X

Set a spike in the spatiotemporal pattern: P (bj , ti)← 1
end for

Examples spike trains are shown in Fig. 3b for a bell sound in
both clean and 10dB noise. It can be seen that each sound generates a
distinctive pattern that represents the information in the spectrogram
through the time-frequency occurrences of +LSF patterns learnt by
the tonotopic SOM. It can also be seen that the clean and noisy pat-
terns are very similar. While there are some random spikes detected
due to the noise, the important bell information is still represented,
therefore the spatiotemporal coding is robust.

2.3. Temporal Learning Rule

Here, we describe the learning rule we used for processing the spa-
tiotemporal patterns. Temporal learning aims at dealing with in-
formation encoded by precise timing spikes. As proposed in [22],
the tempotron rule is efficient for classifying a great number of spa-
tiotemporal patterns. This biologically plausible rule has previously
been successfully applied in a simple task of time-warp-invariant
word discrimination [23], hence we adopt this rule here.

According to the tempotron rule, the synaptic plasticity is gov-
erned by the temporal contiguity of a presynaptic spike and a post-
synaptic depolarisation, and a supervisory signal. This rule modifies
the synaptic weights such that the trained neuron will emit one spike
when it is presented with a pattern corresponding to one category
(C+) and no spike presented with a pattern corresponding to an-
other category (C−). The subthreshold membrane voltage U(t) of
the neuron is a weighted sum of postsynaptic potentials (PSPs) from
all incoming spikes:

U(t) =
∑
j

wj

∑
ti<t

S(t− ti) + Urest ∀ t ∈ [0, T ] (8)

where wj and ti are the synaptic efficacy and the fired time of the
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jth afferent, and T is the duration of the pattern. Urest is the rest
potential of the neuron. S denotes the normalised PSP kernel:

S(t− ti) = S0(exp(
−(t− ti)

τm
)− exp(

−(t− ti)

τs
)) (9)

where τm and τs are decay time constants. S0 normalises PSP so
that the maximum value of the kernel is 1.

Without incoming spikes, the neuron’s potential is at rest. Each
incoming spike will trigger the change of neuron’s potential, and
the maximum change by this spike depends on its synaptic efficacy.
When U(t) crosses the threshold, the neuron emits a spike, after
which the potential gradually decreases to the rest value by shunting
all the following input spikes.

For classifying two categories, the neuron will modify its synap-
tic weights whenever there is an error response. The learning rule
used depends on the firing of the neuron, which either (A) fails to
fire, or (B) erroneously fires:

∆wj =


λ
∑

ti<tmax
S(tmax − ti), if A;

−λ
∑

ti<tmax
S(tmax − ti), if B;

0, otherwise.
(10)

where tmax denotes the time at which the neuron reaches its maxi-
mum potential value, and λ > 0 is the learning rate. In this learning
rule, long term potentiation (LTP) is activated if the neuron failed to
spike on a C+ pattern and long term depression (LTD) is activated
if the neuron erroneously fired a spike on a C− pattern.

In the multi-class case, we train one neuron corresponding to
each category. The testing pattern is classified to the category that
associates with the most strongly activated neuron.

3. EXPERIMENTS

In this section we carry out experiments to show the performance of
our proposed LSF-SNN system on a sound recognition task.

Sound Database: We select the following ten sound classes
from the Real Word Computing Partnership Sound Scene Database
[24]: bells5, bottle1, buzzer, cymbals, horn, kara, metal15, phone4,
ring and whistle1. The sound files have a high SNR, and each con-
tains an isolated sound, with a small amount of silence before and
after. For each of the 10 classes, 20 files are randomly selected for
training and another 20 for testing, giving 400 clips in total. The av-
erage performance is then reported across 5 runs of the experiment.

Experimental Methods: We compare our method against two
baseline frame-based HMM systems, including one that uses miss-
ing features to cope with the different noise conditions [19]. The
idea is to estimate a reliability mask for the spectrogram and mod-
ify the classifier to deal with these missing elements. Here we use
bounded marginalisation, using the implementation provided in the
CASA Toolkit [25]. This aim is to provide a comparison between
the approach in this paper utilising a local missing feature mask, as
estimated for each LSF feature in (6), and a conventional missing
feature approach that is applied to frame-based features.

The following methods are therefore evaluated:

1. Proposed LSF-SNN method, with an SOM comprised of
N = 50 × 10 = 500 neurons, which we found gave a good
trade-off between accuracy and performance.

2. Baseline MFCC-HMM, with 5 states and 5 Gaussian mix-
tures per state. The frame-based MFCCs have 36-dimensions,
with 12 cepstral coefficients without the zeroth component,
plus their deltas and accelerations.

Method: LSF-SNN MFCC-HMM MF-HMM
Clean 98.5% 99.0% 95.7%
20dB 98.0% 62.1% 94.2%
10dB 95.3% 34.4% 84.7%
0dB 90.2% 21.8% 69.5%
-5dB 84.6% 19.5% 53.8%

Average 93.3% 47.3% 79.6%

Table 1. Results for the proposed LSF-SNN method against two
baseline HMM systems, including a missing feature (MF) method.

3. MF-HMM, using a 36-dimension Mel-frequency spectral
coefficient feature, with the same HMM configuration as
above, but with the decoder supporting missing feature (MF)
marginalisation. We estimate the mask using the local SNR
method, as given in [19].

For this experiment, the classification accuracy is investigated in
mismatched conditions, using only clean samples for training. The
average performance for each method is reported in clean and at 20,
10, 0 and -5 dB signal-to-noise ratio (SNR) for the “Speech Babble”
noise environment, taken from the NOISEX’92 database [26].

Results: The experimental results are presented in Table. 1.
It can be seen that the proposed LSF-SNN method performs well
for each of the noise conditions, achieving an average accuracy of
93.3% down to -5dB. It can also maintain an accuracy of over 90%
in the challenging 0dB SNR condition. This outperforms the two
baseline methods in all but the cleanest condition. Although even
here, we still achieve a very good accuracy of 98.5%, which is only
0.5% lower than the baseline MFCC-HMM, which was trained in
matched conditions.

The results also show that the simple frame-based MFCC-HMM
is not robust to noise, as it achieves an average performance of only
47.3%. This is because there is no compensation for the mismatch
between clean training samples and the noisy testing conditions. The
MF-HMM missing feature method improves considerably on this
result, achieving an average performance of 79.6% over the different
SNR conditions. However, in clean conditions the method did not
perform as well as either the MFCC-HMM or our proposed LSF-
SNN methods, and in noisy conditions the performance is limited
by the accuracy of the missing feature mask, which is difficult to
estimate reliably over the whole spectrogram.

Overall, our proposed LSF-SNN method performed well in both
clean and noisy conditions, demonstrating a robust performance
across a wide range of challenging noise conditions.

4. CONCLUSION

In this paper, we proposed the LSF-SNN system for robust sound
recognition, which is a novel approach based on the temporal coding
of local information in the spectrogram. We made use of local spec-
trogram features, which we found can characterise the information
in the spectrogram well and, through a local missing feature mask,
is also robust in the presence of background noise. These were then
clustered using a tonotopic SOM to produce temporal spike patterns,
which represent the time-frequency occurrences of LSFs in the spec-
trogram, that could then be learnt using an SNN using the Tempotron
learning rule. Our experiments showed that our LSF-SNN system
could outperform the best-performing baseline approach in all but
the cleanest of conditions, which underlies the effectiveness of the
approach.
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