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ABSTRACT

This article describes an audio signal processing algorithm to
detect water sounds, built in the context of a larger system aiming to
monitor daily activities of elderly people. While previous proposals
for water sound recognition relied on classical machine learning and
generic audio features to characterize water sounds as a flow texture,
we describe here a recognition system based on a physical model
of air bubble acoustics. This system is able to recognize a wide
variety of water sounds and does not require training. It is validated
on a home environmental sound corpus with a classification task, in
which all water sounds are correctly detected. In a free detection
task on a real life recording, it outperformed the classical systems
and obtained 70% of F-measure.

Index Terms— Water, drop, bubble, activity of daily living,
acoustic event detection, computational auditory scene analysis

1. INTRODUCTION

While the water sounds of, e.g., rain, rivers or sea are prevalent in
nature, and an emblematic part of human’s sonic history [1], they
are also indicative of many of our everyday home activities, such
as cooking or washing. Unsurprisingly, the ability to detect such
sounds automatically has therefore become a crucial part of a recent
trend of systems monitoring Activities of Daily Living (ADL) in the
context of elderly assistance and healthcare.

More precisely, recognizing ADL that involve water is used to
assist elderly people in staying autonomous at home [2, 3, 4], to pro-
vide reminding prompts for Alzheimer’s disease patients [5], or help
doctors diagnose age-related dementia [6]. The IMMED project [7],
which is the context of our work, aims to provide doctors with an-
notated video recordings of their patients, shot in their own place of
residence, to help them measure and diagnose patterns of autonomy
loss that would otherwise be difficult to observe. The main objective
of the project is to develop algorithms to automatically segment the
video recordings into key patient ADL, to make their navigating eas-
ier for doctors. As several of the ADL of interest for doctors use wa-
ter, e.g. washing hands, brushing teeth, doing the dishes, cooking or
gardening, the automatic water recognition task, merged with other
sources of information [8], is expected to contribute significantly to
the usability of the system. Beyond such healthcare applications, wa-
ter activity detection is also used to monitor water usage [9, 10, 11]
and to detect water leakage and water waste [12, 13, 14].

From the technical point of view, the task of water sound detec-
tion is a special case of the more general problem of Acoustic Event
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Detection (AED) [15]. This challenge has motivated several recent
attempts at adapting the classical audio pattern recognition method-
ology to the specificity of the task.

A typical difficulty of real-life AED [16] comes from the pos-
sible overlapping of many sound events. Target sounds may occur
simultaneously with a background of e.g. speech or traffic noises,
which will make their recognition less accurate. Some studies pro-
pose therefore to attached microphones directly on water pipes. A
conjunction of four microphones were used to recognize eight daily
living activities in a house, with the two features of Zero-Crossing
Rate (ZCR) and root mean square [2]. In 2008, Irbaz et al. [9] pro-
posed to use a sensor feeding a classification algorithm that relied
on Mel-Frequency Cepstral Coefficients (MFCC) and a k-Nearest
Neighbor (KNN) classifier. In another study, Chen et al. [3] pro-
posed to detect activities from a single microphone positioned near
the washing basin, also using MFCCs but a more sophisticated Hid-
den Markov Models (HMM) classifier. In one of the most sophisti-
cated set-up to date, Taati et al. [5] focused on the task of detecting
the activity of hand-washing from a combination of audio and video
features, collected by a camera fixed above the sink. The audio fea-
tures used in the system were the signal to noise ratio, ZCR, spec-
tral centroid, spectral roll-off, spectral flux and MFCC; all achieved
comparable performances regardless of what classifier was tested.

Nonetheless, another difficulty of real-life AED lies in the het-
erogeneity of data collected from different places. Two recordings of
e.g. water sounds can be acoustically very different for a variety of
incidental reasons, such as the presence of a different mix of other
sounds, the acoustics of the room, microphone position or quality,
the physical properties of the appliances (e.g. sink and faucet), and
the activity which is carried out. Both issues combine to make a very
hard case for the classical statistical pattern recognition approach.
We therefore choose to depart from the machine learning approach
that has been prevalent to date. In a previous work, with our own sys-
tem based on a wearable device, we introduced an original feature,
spectral cover, and found it to be more robust to speech and environ-
mental background noises than state-of-the-art methods [17].

Despite all the variety, all of these approaches rely on similar
assumptions: that water sounds are continuous flow sounds that can
be modeled as generic audio textures. However, in reality, most of
the ADL involving water can occur without a distinct water flow. We
contend here that what makes liquid sounds so specific, and percep-
tively salient, is rather their temporal granularity, which results from
the acoustics of individual air bubbles.

In this paper we present a original method for water sound de-
tection which is based on a physical models. This method does not
require training and can be applied to a wide variety of water sounds.
Section 2 describes the water sound modelling. The details of our
system are explained in section 3. Sections 4 and 5 present respec-
tively its development and test experiments.
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2. WATER SOUND MODELLING

Water sounds have been studied for a long time. It has been known
for almost one century that water by itself hardly makes any sound
at all [18]. It is mostly when air is trapped by water that sounds
can be heard. Perhaps surprisingly, liquid sounds come mainly from
harmonic vibrations resulting from the entrainment of air bubbles.
These bubbles can be created for example by drops falling into wa-
ter. Their time-frequency localization makes some water sounds per-
ceptively easy to recognize [19].

Leighton gave large revue of the acoustic bubble vibration phe-
nomenon [20]. Recent studies in sound synthesis also use models
based on air bubble vibration. Doel proposed a model of synthesis
based on water drops falling into water to create complex liquid
sounds [21]. Some recent improvements have been suggested,
which take into account the sound radiation [22], or different form
of bubble oscillation [23]. We describe in this part a simple model
of bubble radiation, based on the studies of [20] and [21].

The impulse response of a radially oscillating air bubble is given
by:

ι(t) = asin(2πft)e−dt (1)

where f is the resonance frequency, d the damping factor, a the
amplitude, and t the time index. According to the Minnearts for-
mula [24], the resonance frequency depend of the radius r of the
bubble:

f = 3/r (2)

The damping factor d can also be expressed in function of the radius:

d = 0.13/r + 0.0072r−3/2 (3)

A perceptual clue that we are hearing a liquid sound comes from
the rising pitch of a bubble formed close enough the surface. The
rising bubble is modelled by setting the frequency as a function of
time according to:

f(t) = f0(1 + σt) (4)

where σ is related to the vertical velocity of the bubble.

We can see on Figure 1 the chirp form of a water drop sound.
In addition to the rising pitch, we notice a short large-band noise at
t = 0. We suppose that this noise is caused by the impact of the
water drop. As water sounds are mainly cause by drops in this study,
we will include impact sounds in our model as attack transients.
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Fig. 1. Spectrogram of a drop falling into water.

3. WATER DROP DETECTION SYSTEM

These acoustic studies gave us material to create a water sound
recognition system based on water drop sound detection. The detec-
tion in the spectral domain is based on the acoustic model previously
described. The bubble sounds will be detected in a spectrogram as
localized time-frequency phenomenons, preceded by an attack.
Their time duration depends on their pitch.

Three steps make up our system (Fig. 2), which are selection
on a filter bank, decision on a time-frequency zone and a final post-
treatment .
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Fig. 2. Flow diagram of our water recognition system.

3.1. Selection on a filter bank

3.1.1. Candidate selection

From the equation (1), we assume that a water drop sound, at a given
time, have all its energy in a single frequency band. The first step
of our system consists in identify possible candidates, as frequency
bins of high energy in a filter bank. From a spectrogram, we com-
pute frequency bands of 200 Hertz width with an overlapping of 100
Hertz. We normalize each frequency bin by the total energy of the
time frame. We select a bin as a candidate if its energy is superior to
a threshold TCandidate according to:

Ebin
Eframe

> TCandidate (5)

Air bubbles are most of the time limited by size. Larger bub-
bles may appear, for instance when a large stone is thrown into the
water. As this activity is quite unusual in a household environment,
we decided to remove candidates which correspond to large bubbles.
Equation (2) implies a link between the radius of the air bubble and
the frequency of the sound. We remove low frequency candidates
under Tlowf = 800 Hz.

3.1.2. Non-harmonic filtering

Equation (1) implies that air bubbles do not have harmonic partials.
We suppress in this step candidates that have been detected on har-
monic time frames to be robust to speech and various harmonic
sounds. The problematic is to remove sounds with harmonic par-
tials like speech but keep water drops, which are, as pure sine waves,
absolutely harmonic.

We suppose that harmonic sounds like speech are most of the
time characterized by a low fundamental frequency, which is under
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Tlowf . We use the Yin algorithm [25] to estimate the fundamental
frequency f0 of a signal at a given time.

However, the Yin algorithm produces errors in a noisy context.
We use its aperiodicity measure ap(t) to validate the f0 found. The
most noisy parts of the signal are maintained, because in this cases
the Yin is not reliable enough to determine f0. We fix an aperiodicity
threshold Tap to suppress candidate in frames t where:

f0(t) < Tlowf & ap(t) < Tap (6)

3.1.3. Attack localization

This step aims to determinate the attack time for each water drop
candidate. We suppose this time is localized before the candidate.
The attack time is allocated to the local minimum energy bin be-
tween the candidate and 100 ms before the candidate. We assume
this time to be the beginning of the water drop event. If the retrieved
time for the minimum is the same that the candidate time, we con-
sider there is no attack and remove the candidate.

3.2. Decision on a time frequency zone

In the first step, we selected candidates on a filter bank. Now, we
consider the full spectrogram, and we are going to validate the can-
didates in larger time-frequency zones.

3.2.1. Water drop zone selection

The damping factor d depends only on the frequency of the water
drop, as we see in eq. (2) and eq. (3). To determine a time zone, we
look for a time t where:

|asin(2πft)e−dt| < ε (7)

which is true if: t > ln(ε/a)
d

.
By fixing a threshold ε expressed in decibel, and supposing a = 1,
we are able to determine a time zone in function of the frequency of
the candidate.

Moreover, for each candidate, we fix the frequency range at
500 Hz around the candidate in order to be robust to pitch variations
(eq. 4). Thus, we consider a rectangular zone around the candidate
found.

3.2.2. Water drop validation

We define a zone before (pre-zone) and a zone after (post-zone) the
selected water drop zone. By considering the discrete aspect of water
drops, there should be less energy in the pre-zone (Epre) and the
post-zone (Epost) than in the water drop zone (Edrop). The pre-zone
and post-zone have the same size than the water drop zone.
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Fig. 3. Time frequency water drop zone.

We validate the water drop candidate if:

Epre < 0.5 ∗ Edrop & Epost < 0.8 ∗ Edrop (8)

As the water drop length is an estimation and depends on several
factors like the recording conditions, we use a weaker condition for
the Post-zone. Finally, we removed all other candidates found in a
validate water drop zone.

3.3. Post-treatment

We apply a smoothing at the end of the process to suppress isolate
water drops. We consider a sliding window of duration st. We re-
moved water drops when their number in the window is always less
than sn.

4. DEVELOPMENT

We made a development corpus by selecting two excerpts of 5 sec-
onds each from the IMMED corpus [7]. One of them is composed of
water drop sounds resulting of a do the dishes activity. The second
one is an excerpt of speech. We added 20 sounds download from
the Freesound Project [26]. 15 of them are water sounds as dripping
water, splash in a swimming pool, tap water, river, or boiling wa-
ter. 5 others are various home environmental sounds as alarm clock,
doorbell, door-opens-and-shuts.

All this files are converting in Wave format at 16 bits and 16
kHz sampling rate. Spectrograms are computed with a Fast Fourier
Transform (FFT) algorithm, with a 512 points hamming window and
a sliding factor set at 2. We fixed our thresholds on this development
corpus and we obtained:
Tcandidate = 0.15, Tap = 0.6, ε = −15dB, st = 2.5s and sn = 5.

(a) do the dishes activity (b) speech

(c) dripping tap (d) door open and close

(e) tap water (f) alarm-clock

Fig. 4. Recognition on various excerpts.

We can see on Fig. 4 results on our system before the post-
processing step. Figure 4-a and 4-b show three seconds excerpts on
our IMMED corpus. We can see that water drops are well detected.
Through to the non-harmonic filtering, the speech excerpt does
not show candidates. The 4 others files come from the Freesound
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Project. An isolated false alarm, due to an high pitched harmonic
sound is visible on Fig. 4-d. The post-processing step is then suf-
ficient to remove this error, however it also remove the two water
drops in Fig. 4-c. Figure 4-e is very interesting: we can see in pres-
ence of a very noisy water flow sound that some water drops sounds
stand out and are detected by our system.

5. EXPERIMENTS

5.1. Classification on a household corpus

We used the BBC-Sound-Effect-Library{#3: Household} to create a
test corpus. This corpus contains 47 files, for a total duration of one
hour. It is composed by home environmental sounds: 9 corresponds
to water sounds and 38 to other sounds. It contains sounds like wash-
hand basin, bath, toilet flushed, dripping tap, and also front door
open and close, telephone, domestic chiming clock, electric jigsaw.

The objective is to classify this corpus into two classes: water
and other. The water class is chosen by our system if it remains at
least one water drop after the post-processing step. Table 1 shows re-
sults of our system in term of number of files detected as water. All
water sounds had been recognized by our water drop system. The F-
measure is 66 % in terms of number of file detected. One false alarm
is due to the frying an egg sound, which imply liquid, even if there
is not presence of water. Other false alarms are specific sounds, for
instance sawing a piece of plywood or match being struck. We as-
sume that those textured sounds are composed of numerous pitched
impacts that are detected by our system.

Table 1. Classification results on the BBC Sound effect library.
Water sounds Other sounds

Corpus 9 38
Water drop system 9 9

5.2. Detection on a real life recording

The second experiment is made on the IMMED project [7]. For pri-
vacy reasons, this corpus is only available to physicians and people
involved in this project. We selected a 21 minutes file consisting of
an elderly person doing different activities at home. As it was record-
ing in a real life context, a lot of environmental sound events occur,
as the opening of noisy doors, the singing of birds, some noises of
cooking utensils, etc. It contains 82 seconds of the do the dishes ac-
tivity. However, the water flow sound can difficultly be heard, that
makes this activity very hard to recognize by classical methods. The
results of this experiment are presented in table 2 in terms of dura-
tion. We can see that almost all the activity has been detected by
our system. The F-measure of this experiment is 70 %. False alarms
are mainly due to manipulation of objects such as plastic bags, or
shocks on the recording device. For comparison purpose, we added
in table 2 results of a previous system which focused on water flow
detection [17] with a F-measure of 45 %. A classical state-of-the-
art approach (GMM/MFCC) obtained only 36 % of F-measure as
highlighted in [17].

6. CONCLUSION

We presented on this paper an original water sound recognition
method which is based on physical models. Two experiments have

Table 2. Detection results on a real-life recording.
Water sounds Other sounds

Water Sound in the database 82 s 1171 s
Water drop system Output 63 s 35 s

Water drop system results F-measure 70%
Spectral Cover system [17] F-measure 45%

GMM / MFCC [17] F-measure 36%

been proposed. The first is a classification task made on a referenced
database composed of home environmental sounds. The second is
a detection task on a file recorded at the home of an elderly person
in real life conditions. Both results are very encouraging. Some
improvements may be considered.

Even if some air bubble sounds stand out from a noisy flow
(Fig. 4-e), we suppose that water sounds are sometimes too noisy
for the drops to be detected. We could therefore consider the fusion
of our system with a water flow detection system. This fusion could
make possible to recognize both the noisy sound of a water flow
and the perceptively salient sounds of air bubbles. Furthermore, the
presence of flow or drops let us plan to use these two systems for an
activity identification task, for example between the activities do the
dishes and filling a container.

7. RELATION TO PREVIOUS WORKS

This study presents a new method for water flow detection, with ap-
plications for elderly assistance. Several papers have been presented
in this field this last few years [2, 3, 5, 9]. All this papers used state-
of-the-art technics for sound recognition, features like energy, ZCR,
MFCC, and classifiers like GMM, KNN or SVM. Two drawbacks
can be seen on the proposal technics.

Firstly, this study all use fixed microphones placed on the water
pipes or above the sink. We suppose this place allows them to avoid
lot of environmental noises, in comparison of the wearable device
used in the IMMED project [7]. Furthermore, the main drawback
we can underline is that the train and test data have been recorded in
the same place. It seems clear that the methods closely depend on the
homogeneity of the data, and are not designed to be used in different
places or different context. In [17], we proposed a method without
training based on a specific feature for water flow recognition in a
noisy environment.

Secondly, all this previous works rely on similar assumptions:
that water sounds are continuous flow sounds. The micro-temporal
evolution of the water sounds was not analyzed. We contend here
that water flow is not the only instance of water sounds. Old acous-
tic studies [18] as well as recent works in sound synthesis [21] and
perception [19] told us that water sounds are mainly composed of air
bubble vibrations. Our system is based on the physical phenomenon
at the origin of the water sound: the air bubbles. A spectral ap-
proach allows us to recognize groups of air bubble sounds in various
excerpts. The system is slightly independent of the recordings con-
ditions, including the appliances (e.g. sink and faucet). This method
can be fitted on a wide variety of context, from the swimming pool to
the bathroom, and can help us to recognize activities of daily living,
including water boiling, do the dishes or washing hands.
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