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ABSTRACT 
 
We propose a two-class classification scheme with a small 
number of features for sleepiness detection. Unlike the 
conventional methods that rely on the linguistics content of 
speech, we work with prosodic features extracted by 
psychoacoustic masking in spectral and temporal domain. 
Our features also model the variations between  non-sleepy 
and sleepy modes in a quasi-continuum space with the help 
of code words learned by a bag-of-features scheme. These 
improve the unweighted recall rates for unseen people and 
minimize the language dependence. Recall rates reported 
based on Karolinska Sleepiness Scale (KSS) for Support 
Vector Machine and Learning Vector Quantization 
classifiers show that the developed system enable us 
monitoring sleepiness efficiently with a lower complexity 
compared to  the reported benchmarking results for Sleepy 
Language Corpus.  
 

Index Terms— sleepiness detection, human–machine 
interaction, audio emotion detection. 
 

1. INTRODUCTION 
 

Sleepiness is an important quasi-emotional state which 
affects safety, performance, comfort and joy-of-use in many 
fields of human–machine interaction [1]. Using speech for 
sleepiness detection is one of the challenging topics in the 
literature, because it is a more robust configuration against 
environmental conditions [2, 3]. Some of the related work in 
the literature deals with the feature extraction while others 
focus on classification methods to improve the detection 
performance. In [3] total of 8500 prosody, articulation and 
speech quality related features are calculated for detecting 
accident-prone fatigue state classification. The highest class-
wised averaged rate achieved is reported as over 80%.  The 
openEAR emotional search engine is adopted to the 
sleepiness detection problem in most of the recent studies. 
openEAR is a generic emotion detection tool, which extracts 
more than 6.552 features by 39 functional of 56 acoustic 
low-level descriptors [4]. Recently the sleepiness sub-
challenge in INTERSPEECH 2011 addressed the sleepy-

non-sleepy classification problem from speech [5]. Test 
results were reported on Sleepy Language Corpus (SLC) [6] 
based on 10 different levels of the KSS [7]. In [5] an 
extended subset of openEAR features, a total of 4368 
features including spectral, energy and voice related low 
level descriptors and their statistical variants, is used for the 
sleepiness detection. The highest recognition rate achieved 
by SVM is reported as 70.3%. The system proposed in [8] 
provides 71.6% detection accuracy achieved by AdaBoost 
fusion of SVM and a new classifier referred as Asymmetric 
Simple Partial Least Squares (SIMPLS).  In [9] a novel 
feature set is selected by applying a correlation-filter subset 
selection on Non Linear Dynamics (NLD) and openEAR 
features that yielded 565 descriptors including 395 non-
linear dynamics and 170 phonetic features. A subset of the 
SLC data set that consists of 372 utterances collected from 
77 speakers is employed for experiments. The highest 
recognition rates are respectively reported as 79.6% (Bayes 
Net) and 77.1% (AdaBoost Nearest Neighbor) for male and 
female speakers.   
      Conventional systems make use of acoustic features 
which are originally proposed for speech recognition hence 
they may not fully model the sleepiness perception because a 
vast majority of them, such as MFCC, are generated for 
short speech frames to decode the phonemes. Consequently, 
a high performance sleepiness detector could only be 
achieved by using very large feature sets or considerably 
small feature sets in combination with highly complex 
classifiers [8, 9, 10]. 
      In this work, we attempt to improve the sleepiness 
detection rates while reducing the computational complexity.  
The sleepiness detection is formulated as a binary 
classification problem based on KSS (sleepy (SL) for a level 
exceeding 7.5, and nonsleepy (NSL) for a level equal or 
below 7.5). The perceptual feature set proposed in [11] is 
adopted to model the audio content of sleepy data. Unlike 
the existing features that rely on the linguistic content of 
speech, we aimed to learn a vocabulary for the sleepiness 
level differences in both perceptually masked spectral and 
the temporal domain. The recognition rates achieved by 
SVM and LVQ obtained on SLC data show recognizable 
improvement compared to existing methods.  
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2. PROPOSED SYSTEM   
Fig. 1 illustrates the main blocks of the overall system.  The 
low level features used in sleepiness detection are computed 
at perceptual spectrum in Bark scale as well as the acoustic 
spectrum in Hz. The feature set is referred as perceptual 
because in order to model physiological and the perceptual 
effects of the human ear we apply the outer ear masking for 
both domains and an additional psychoacoustic masking in 
Bark [12]. Basically we have a training scheme in which the 
SL-NSL classifier is designed based on a training feature set 
refined by a Bag-of-Features (BoF) [13] scheme. The idea 
behind performing BoF is to learn the vocabulary for the 
sleepiness level differences in the quasi-continuum 
Karolinska Sleepiness Scale. Thus a descriptor (codeword) 
is assigned to each sub-cluster independently and the 
resulting set of codewords are used for model learning. In 
our work, the codewords are specified by vector 
quantization applied on the features whitened by Principle 
Component Analysis (PCA). Classification scheme 
illustrated in Fig.1 performs labeling the received SL-NSL 
samples based on the decision rule provided by the model 
learning block. Sleepiness recognition rates are reported per 
utterance after majority voting of sample labels. The system 
is detailed in the following section in which formulation of 
feature extraction is also given. 
 

3. PERCEPTUAL FEATURES 
We use a compact feature set that includes 9 descriptors. 3 
out of 9 are calculated in Hz and 6 are computed in Bark. 
Table 1 lists these features and gives a brief description of 
each where more explanation is presented in the following.   

       Let [ , ]
f

F k n
 
denote the Short Time Fourier Transform 

(STFT) of the audio sample where n is the index of time-

frames and fk  is the frequency bin index. Corresponding 

masked spectral component is given as 

       

[ ]

20,[ , ] [ ] 10 .
W kf

e f fF k n F k n= ×   (1) 

where the weighting function [ ]
f

W k  denotes the outer 

middle ear frequency response at frequency bin fk  [12]. 

     We can simply monitor sleepiness levels based on the 
variations in signal bandwidth, because perceived timbre, 
dullness and muffling effects in speech change according to 
the sleepiness level resulting in different perceptual 
bandwidths for NSL and SL audio. Therefore, we define the 
first feature, “10dB perceptual bandwidth (BW1)”, as the 
frequency corresponding to the spectral component which 
exceeds the noise floor at least by 10 dB. The feature “5dB 
perceptual bandwidth (BW2)” is specified in a similar way 
where the spectral components exceeds  the noise floor at 
least 5dB.  
   As a third feature, Average Harmonic Structure Magnitude 

 
Fig. 1 The overall system block scheme. Dashed lines 
indicate steps carried out only during classifier training. 
 
(AHSM), is defined in order to model the monotonous nature 
of NSL audio that is much more similar to a periodical 
signal with stable harmonics with respect to SL audio. On 
the other hand due to the intonation fluctuations of the 
speech in sleepy mode, the SL signal should not have a 
periodic structure as clear as the NSL signals. 
Conventionally fundamental frequency thus harmonic 
structure is estimated from the log spectrum of correlation 
function of audio signal [4, 14]. Unlike these methods we 
use the correlation of sleepiness differences through critical 
bands instead of time domain audio signal itself. 
Furthermore, in sleepiness detection, the general absence of 
a single valid audio measure for each person makes it 
necessary to acquire a wide variety of features including 
subjective self-assessment measures of sleepiness state.  To 
overcome this difficulty, we aimed to learn the sleepiness 
level differences with respect to a reference in both 
perceptual spectral bands as well as the temporal domain.  
Hence first the outer ear weighted energy differences 
between SL/ NSL audio and the reference set are computed 
through the critical bands. Then the correlation of the energy 
differences through the critical bands is obtained.  
Fundamental frequency is estimated from the log spectrum 
of the correlation function. Average value of the 
fundamental frequencies estimated for successive Y audio 
frames is reported as AHSM. This is referred as chunking in 
Fig.1. The idea behind performing chunking is to make the 
sleepiness levels of speech more tractable. Hence Y is 
specified as long enough where the sleepy audio signal can 
be considered stationary.   We set the length of audio frames 
to 43ms with 50% overlapping and Y is set to 70 frames. 
     Moreover, it is shown that the emotional differences 
(variances) in audio are more discriminative than the data 
itself thus can be used to enrich the discrimination capability 
of extracted speech features [11].  To lay over this approach 
on a practical basis we make use of a reference concept to 
distinguish sleepiness levels with respect to another. Hence 
6 out of 9 of our features, including AHSM, reflect the 
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content variations of observed audio samples from the 
reference audio set. Also the subjective nature of the SL-
NSL discrimination forces us to employ a reference which 
alleviates the effect of this subjectivity. As it is detailed in 
Section 4, the reference audio set is chosen in such a way 
that to highlight between class variations. Data belonging to 
test speaker is not included in the reference set, thus there is 
no need for a priori information about the test speaker. 

     Table 1 List of  features used for sleepiness detection. 

Low level descriptors calculated in Hz 
Average harmonics 
structure 
magnitude(AHSM) 

Average of the fundamental frequencies 
estimated from the log spectrum of the 
correlations of sleepiness differences 

10dB perceptual 
bandwidth (BW1) 

The highest frequency component which 
exceeds the noise floor by at least 10 dB. 

5dB perceptual 
bandwidth (BW2) 

The highest frequency component which 
exceeds the noise floor by at least 5 dB. 

          Low level descriptors calculated in Bark 

Average number of 
non-sleepy blocks 
(ANSB) 

Expected number of non-sleepy blocks 
within a time interval. 

Normalized 
sleepiness level 
difference (NSD) 

Average of the masked variations between 
the pitch patterns of SL/NSL audio and 
the reference audio computed over the 
Bark scales of an audio frame. 

Normalized 
Spectral Envelope 
Difference(NSED1) 

Normalized envelope variations of the un-
smeared SL/NSL pitch patterns from the 
reference within the successive frames for 
each critical band. 

NSED2 Average of NSED1 over all critical bands 

NSED3 The temporal average of NSED1 through 
successive Y audio frames. 

Overall loudness of 
the frames (OLF) 

Sum across all critical bands of outer ear 
weighted loudness values of an audio 
frame. 

The un-smeared excitation pattern [ , ]sE k n  is computed 

for each critical band of each audio frame by smearing the 
spectral energy over the frequency as in Eq.(2) [12], 

1

0

1
0.4

0.4, ] ,[ [ , ] ( , , , [ , ])
cN

k
s e edBE k n P k n S i k n P k n

-

=

=
 
 
 
∑      (2) 

where C
N  denotes the number of critical bands and is set to 

109 according to PEAQ [12]. In Eq.(2) [ , ]eP k n  be the Bark 

representation of the outer ear weighted  energy given by 
Eq.(1) and is referred conventionally as the loudness (pitch 

pattern) computed at critical band k, where  fk  in Hz is 

replaced by k . ( , , , )dB eS i k n P denotes the spreading function 

of the band i for an energy component at the band k. In order 
to track temporal changes encountered in SL-NSL speech, 
we also perform time domain spreading to monitor the pitch 

variations over the frames, again in each critical band. Let 
[ , ]derE k n

 
denote the envelope changes of the [ , ]SE k n  

described by Eq(2). Eq.(3) model the envelope changes 
within a critical band over successive frames. 

0.3 0.3

, ] [ , 1]

(1 ) [ , ] [ , 1]

[

S S

der derE k n a E k n

a E k n E k n

= × -

+ - × - -               (3) 

      We normalize the differences between the envelope 
changes of SL-NSL data as in Eq.(4) to calculate a new 
feature 1NSED  where the parameter  β controls the 
minimum difference thus normalization. 

 
/

/
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-
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+
         (4) 

     We derive two statistical descriptors from the 
normalized spectral envelope difference described in Eq.(4).  
Basically, the first descriptor ( 2NSED ) is calculated by 
taking the average of normalized differences over all z=109 
Bark scales. The temporal average of the normalized 
differences through successive Y audio frames yields the 
second statistical descriptor ( 3NSED ). 

We  compute a new feature, normalized sleepiness level 
difference (NSD) as in Eq.(5), where Z = 109  denotes the 
number of critical bands, n refers to the audio frame number, 
and M[k,n] adaptively masks the low frequency components 
to highlight the high frequency bands of SL-NSL audio. 
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NSD enable us monitoring variations between the pitch 
patterns over the critical bands. 
    We use summation of loudness through critical bands as 
another discriminative feature. To enclose the hearing 
model, we compute the loudness as the excitation pattern 
normalized by the internal noise of ear (EIN ) as in Eq.(6), 
which is also different from conventional formulations. 

  

1 1

0 0

[ ,

[ ]

]
[ ] [ , ]

IN

Z Z

k k
total

E k n

E k
L n L k n

- -

= =

= =∑ ∑                              (6) 

Since the nature of NSL audio tends to have higher 
excitation pattern peaks in comparison to SL, the feature 
average number of non-sleepy blocks (ANSB) provides a 
measure for the occurrence of high excitation levels through 
successive frame groups analyzed in bark scale, therefore 
improves the accuracy of sleepiness detection. To calculate 
the ANSB within a time interval, we use a probabilistic 
approach that estimates the number of frames in which the 
excitation level difference remains over a threshold [11]. 

 
4. TEST RESULTS 

We have performed the sleepiness detection tests on the 
SLC data corpus [6] used in the Speaker State Challenge [5] 
to compare our performance with the existing systems. The 
SLC data includes 9089 utterances, which features 21 hours 
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of speech recordings of 99 subjects. The sampling rate of 
speech is 16 kHz. According to the data used for training 
and test stages, test scenarios are named as Train vs Develop 
and Train+Develop vs Test as in [5]. Number of utterances 
used for the training and test are respectively 3366 and 2915 
for Train vs Develop. For Train+Develop vs Test, we have 
6281 and 2808 utterances, respectively. The sleepiness 
detection rates achieved by the SVM and LVQ classifiers 
are reported for SL and NSL speech. Both of these 
classifiers are supervised thus a training scheme has been 
applied before classification. We used Weka libSVM 
toolbox and LVQ toolbox [15].  

Table 2 reports the recall rates of SL data (RRSL), NSL 
data (RRNSL), and unweighted accuracy on average (UA), for 
the both scenarios. It can be concluded that the SVM 
provides higher recognition rates compared to the LVQ. 
Gender based recognition rates listed at the last three 
columns of Table 2 reports higher detection rates for males 
compared to females. 

In order to investigate impact of individual features, 
extensive tests are performed by attribute evaluation tools of 
Weka. It is observed that six of the features, namely NSD, 
NSED3, ANSB, BW2, AHSM, and OLF, have dominance on 
the sleepiness monitoring. Table 3 reports the performance 
achieved by 6 and 9 features on SLC for Train vs Develop. 
It can be concluded that none of the features are redundant. 
The improvement becomes recognizable on the detection of 
SL speech and up to 10% increase is observed on the UA 
detection rates when all of the features are used.  
    Table 4 reports the sleepiness detection performance 
achieved by the proposed system compared to the existing 
ones.  IS2011 Winner refers the highest scores reported by 
the Interspeech 2011 Speaker States Challenge participants 
[8] where the features of openEAR are used. IS2011 SSC 
denote the highest baseline performance declared in [5] and 
the results are obtained by the openEAR.  It can be seen 
from Table 4 that the SVM with perceptual features achieves 
the highest detection rates for both of the test cases. Even 
though the number of reference utterances used for training 
is small, the SVM provides higher accuracy compared to the 
IS2011 Winner and IS2011 SCC. It can be concluded that 
UA rates achieved by our system with SVM are increased 
from 80% to 90% when the number of reference utterances 
is increased from 4 to 57 (large-ref) at the training stage. It is 
concluded during our work that the samples from opposite 
classes have to be included in the reference set at the 
training stage. For the reported results, number of 
codewords learned by BoF are 4K (out of 77K feature 
vectors) and 8K (out of 77K feature vectors) for the test 
scenarios Train vs Develop and Train+Develop vs Test, 
respectively. After learning the codewords by BoF, the ref 
set size at test stage is reduced. Nevertheless, at the test 
stage the computational complexity of SVM with RBF 
kernel is O(M) where M is the size of feature vectors [16]. 
Knowing that M is equal to 9 while it is in the order of 

thousand in comparable systems, our computational 
complexity at the test stage will be much more lower  even 
though the training complexity can be considered 
comparable when the size of reference set is large. Hence 
the performances achieved by two different classifiers 
confirm the perceptual feature set can be efficiently used for 
sleepiness detection. 
 Table 2 SL-NSL recognition rates for utterances.(%). 
 

 
Table 3 Impact of features on sleepiness detection (%). 

 
 

 

 

 

Table 4 Overall performance obtained on the SLC data 
compared to the existing systems (%). 

 

4. CONCLUSIONS 
Unlike the existing systems that rely on phonetic speech 
features, we propose a sleepiness detection scheme that 
integrates psychoacoustic and temporal masking into feature 
extraction. The perceptual code words learned by BoF 
enable us to model the temporal and spectral content of 
sleepy data in a quasi-continuum space. Extensive tests on 
SLC data demonstrate that we recognizably improve the 
performance compared to the existing schemes in terms of 
the UA as well as the individual SL and NSL recall rates. As 
a result of the frame based feature extraction scheme, rather 
than mostly used segment based techniques, the developed 
method does not require a pre-segmentation stage and can be 
easily adopted to online processing. 

Train  (3366 utter) vs Develop (2915 utter) 

Classifier RRSL  RRNSL UA M F UA 

SVM 88.5 94.6 91.6 92.8 90.9 91.9 

LVQ 83.6 87.5 85.5 90.4 83.6 87.0 
Train+Develop vs Test (2808 utter) 

     SVM 79.9 80.1 80.0 89.40 76.40 82.90 

LVQ 63.2 78.7 71.0 77.9 67.8 72.9 

Train vs Develop 
 

6 dominant features All Features 

Classifier RRSL RRNSL UA RRSL RRNSL UA 

SVM 73.8 93.2 83.5 89.1 97.2 93.2 
LVQ 75.7 82.9 79.3 83.6 87.6 85.6 

Train vs Develop Train + Develop  
vs Test  

RRSL RRNSL UA RRSL RRNSL UA 

SVM (large-ref)  96.7 96.0 96.3 94.2 87.6 90.9 

SVM 89.1 97.2 93.2 79.9 80.1 80.0 

IS2011 Winner [5] 60.3 75.7 68.0 64.2 79.1 71.6 

IS 2011 SSC     [8] NA NA 67.3 NA NA 70.3 
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