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ABSTRACT
A bird phrase segmentation method using entropy-based change
point detection is proposed. Spectrograms of bird calls are usually
sparse while the background noise is relatively white. Therefore,
considering the entropy of a sliding time-frequency block on the
spectrogram, the entropy dips when detecting a signal and rises
when the signal ends. Rather than applying a hard threshold on
the entropy to determine the beginning and ending of a signal, a
Bayesian change point detection is used to detect the statistical
changes in the entropy sequence. Tests on a database of Cassin’s
Vireo (Vireo cassinii), our proposed segmentation method with spec-
tral subtraction or a novel spectral whitening method as the front-end
generates more accurate time labels, lower the false alarm rate than
the conventional time-domain energy detection method and achieves
high phrase classification rate.

Index Terms— Bird phrase segmentation, Entropy, Change
point detection, Spectrogram, Bird phrase classification

1. INTRODUCTION

An automated system capable of reliably segmenting bird songs
and identifying species is an indispensable tool for analyzing an
audio database, used for studying behavior of vocalizing species,
and a more refined understanding of bird communication [1]. Sev-
eral species identification methods have been shown to be useful
in many aspects; however the automated segmentation of the bird
songs has received less attention. Manually segmented bird songs
were used for bird species identification in [2–5]. Time-domain en-
ergy detection is used in [6–8] for segmentation. In [9], the authors
used Kullback-Leibler (KL) divergence between the audio power
spectrum and the uniform distribution for segmentation. A time-
frequency segmentation by machine learning methods is proposed
in [10].

Our goal is to find accurate and consistent phrase labels such
that the segmentation results could be passed to a phrase classifier
for reliable classification. Phrases are typically the basic units of un-
derstanding the bird communication. A phrase usually consists of
several syllables with short silence in between, which makes phrase
segmentation non-trivial. We propose a time/frequency segmenta-
tion method by entropy-driven change point detection. Entropy is
calculated from the sliding time-frequency blocks in the spectro-
gram. Since the spectrogram of single bird songs is generally sparse
in the sense that high power signals occupy a small fraction of the
time and frequency bins. An example is shown in Fig. 1(a). This is
because each phrase usually consists only a single frequency at any
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given instant. Harmonics may be present but even so the instanta-
neous spectrum is sparse. The phrase could be slowly modulated in
amplitude or frequency [11] but still the spectrogram is sparse. In
contrast, when there is no phrase present, the spectrogram displays a
random response whose statistics do not vary with time or frequency.
Therefore, the entropy drops when the sliding block is moving from
an time interval without any bird songs (“quiet period” will be used
hereafter) to the start of a song. The entropy stays low in the time
interval of a bird phrase (“call period” will be used hereafter) and
rises up as the block is leaving the call period. A polynomial-based
spectral whitening method is also proposed to serve as the front-end
of the system. The purpose is to enlarge the difference between the
entropy levels of a call period and a quiet period.

When applying the segmentation method to the long field
recordings, the entropy of bird phrases is not always at the same
level and is sometimes even higher than the one at certain quiet
periods, depending on the interference level. Further, the energy
received from a song may depend on which direction the bird is
temporarily facing [12]. Applying a hard threshold as considered
in other time-domain segmentation methods in the literature [6–9]
would easily miss those phrases. Instead, we propose using a change
point detection method to detect the abrupt changes in the statistics
of the data. Therefore, it can distinguish call periods from quiet
periods as long as there are changes in the entropy level. Change
point detection (CPD) detects change in the generative parameters of
a time series. CPD has been shown to be a key aspect of many real
world applications [13–17]. In this paper, we use an online Bayesian
CPD proposed in [18]. This approach is based the assumption that
the data models across segments are i.i.d. and non-overlapping,
which is a reasonable assumption for bird phrase segmentation.

2. ENTROPY AND FRONT-END PROCESSING

In the following, we will describe how we characterize each time-
frequency block in the spectrogram by its entropy in an efficient
way. Additionally, two types of front-end processing are introduced.
Spectral whitening is applied to the spectrogram before calculating
entropy in order to further distinguish the entropy level between
a call period and a quiet period. Spectral subtraction can also be
used as a front-end processing to mitigate the interference and back-
ground noise.

2.1. Entropy Calculation

A time-frequency block of time length w and containing F fre-
quency bins from f1 to fF is sliding horizontally from the beginning
of the spectrogram, as shown in Fig. 1(a). The selection of the block
length and the frequency range depends on the targeted bird species.
The frequency limits f1 and fF should be properly selected to cover
only the frequency band of interest. The block length w should be
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Fig. 1. (a) Spectrogram of a sampled bird vocalization recording and
a time-frequency sliding block for calculating the entropy. (b) The
whitened spectrogram (c) The entropy sequences with and without
whitening calculated from the sliding time-frequency block.

no longer than the length of the shortest quiet period between two
phrases.

Entropy is calculated from each time-frequency block. Denote
τ as the block shift and p(n, f) as the power spectrum at time n and
frequency bin f calculated from the short-term Fourier transform
(STFT). The entropy hk is obtained by

hk = −
kτ+w∑
n=kτ+1

fF∑
f=f1

z(n, f) ln z(n, f), (1)

where z(n, f) = p(n, f)/
∑kτ+w
n=kτ+1

∑fF
f=f1

p(n, f) is the normal-
ized power spectrum within the block. There are two main reasons
why we calculate the entropy from a time-frequency block instead
of at every time instant: 1) The entropy sequence is smoothed to
prevent the “border effect” [6,19,20], which usually causes segmen-
tation errors at the beginning and toward the end of a call. 2) The
entropy given by a block is more representative and suffers less from
bursty background noise.

However, when the block rate is high, calculating entropy purely
by (1) is expensive in terms of memory consumption and computa-
tional load. To this end, an alternative expression of hk is developed;

hk = −Bk
Ak

+ lnAk, (2)

where Ak =
∑
n

∑
f p(n, f), Bk =

∑
n

∑
f p(n, f) ln p(n, f).

The lower and upper limits of the summations are the same as
in (1) but they are omitted here for simplicity. The calculation

of these two terms can be significantly reduced by saving two
partial sums over frequencies of interest, an =

∑
f p(n, f) and

bn =
∑
f p(n, f) ln p(n, f), at the completion of each STFT. Then

Ak and Bk can be obtained by accumulating the partial sums over
the current block time to get inputs to the entropy calculation; i.e.

Ak+1 = −
(k+1)τ∑
n=kτ+1

an +Ak +

(k+1)τ+w∑
n=kτ+w+1

an. (3)

Bk can be updated in the similar fashion.

2.2. Spectral Cleaning and Whitening

The entropy defined in (1) is maximized if z(n, f) in a block is
uniformly distributed. Therefore, the entropy of a block with white
background noise is higher than the one with color background
noise. In contrast, the entropy is low when there are only few strong
power components that dominate others within the block. It implies
that we can get a lower entropy if we are able to standardize the
noise within a block. From these observations, one can enlarge
the difference of the entropy levels between a quiet period a call
period by applying either a spectral cleaning or a spectral whitening
method. The spectral cleaning method we use is spectral subtrac-
tion [21–23] which is a well-known noise reduction technique in
speech processing. As for the spectral whitening, we proposed a
computationally efficient polynomial-based method.

2.2.1. Polynomial-based Whitening Filter

The basic principle is to multiply the power spectrum at time n,
pn =

[
p(n, f1) · · · p(n, fF )

]T , by a cth degree polynomial
over the frequency bins of interest. The coefficients of this poly-
nomial have to be adaptively adjusted over time. Let the whitening
filter at time t and over frequency bins f1 to fF be written as Q · gt,
where gt is a (c + 1) × 1 vector representing the polynomial co-
efficients varying with time, and Q is a F × (c + 1) matrix with
orthonormal columns. The degree of the approximation polynomial
c need not to be large because the background noise is usually not
rapidly changing. A quadratic polynomial to capture the dynamic
of the spectrum is used in this work. For quadratic polynomial the
three basis columns of Q are, a constant vector, a vector linear in fre-
quency, and a vector quadratic in frequency. With proper shift and
scale in the frequency, these vectors can easily be made orthonormal.

It is not desired to whiten the bird call power spectrum along
with the background noise power spectrum. To reduce the sensitivity
to the sparse and high energy bird calls when present, the whitening
polynomial is set to capture the variation of the time-averaged log
power spectrum. Namely, the polynomial should satisfy

Qgn + ln = 0, (4)

where 0 is a zero vector, ln = 1
M

∑n
i=n−M+1 lnpi and M should

be much larger than the number of pi’s in a single bird phrase. From
(4), it can be derived that the polynomial coefficients gn should be
updated in a recursive manner as the new STFT output pn+1 is avail-
able,

gn+1 = gn +
−QT lnpn+1 − gn

M
. (5)

In Fig. 1(b) and 1(c), we show the whitened spectrogram and
compare the entropy sequences of the same recording before and af-
ter performing the proposed whitening method. It is clear that the
entropy level of the quiet period becomes higher while the entropy
of the bird call period is about the same level, which shows the ef-
fectiveness of the proposed method.
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3. BAYESIAN CHANGE POINT DETECTION AND
POST-PROCESSING

Given the entropy sequence computed by the method described in
Section 2, we need to distinguish the bird calls from the quiet periods
by its level. A Bayesian change point detection method is used to
judge the starting and end points of a bird phrase.

3.1. Online Bayesian Change Point Detection

The change point detection technique used here is based on the work
in [18]. In this section, we will briefly introduce this method with
some modification made in order to fit our application.

Denote h1:t as the data sequence, h1, h2, · · · , ht, observed from
time 1 to t. Assume all the data are independently sampled from the
same class of probability distribution, but the parameter set of the
distribution could be changing over time. Therefore, the sequence is
divided into mutually exclusive segments, and the data within each
segment are independently sampled from the distribution of the same
parameter set. A change point occurs when there is a change in the
parameter set, which is at the beginning of each segment. Define the
run length rt as the time length since the last change point observed
at time t, so rt = 0 indicates a change point at time t. The objective
is to estimate the run length by

r̂t = max
rt=0,1,··· ,t

P (rt|h1:t). (6)

The posterior probability in (6) is obtained by computing the joint
probability P (rt ∩ h1:t) recursively [18];

P (rt ∩ h1:t)

=
∑
rt−1

P (rt|rt−1)P (ht|hrt−1)P (rt−1 ∩ h1:t−1), (7)

where hrt−1 denotes the data set associated with the run length rt−1.
The modeling of the probability P (rt|rt−1) will be discussed in

Section 3.2. The predictive probability P (ht|hrt−1) in (7) is asso-
ciated with the data probability model through

P (ht|hrt−1) =

∫
P (ht|θ)P (θ|hrt−1)dθ, (8)

where P (ht|θ) is the postulated data model with parameter set θ and
is always the same class of distribution as previously mentioned. In
Bayesian approach, the parameter set θ is assumed to be random so
P (θ|hrt−1) can be viewed as the prior distribution of θ at time t.
Consequently, the posterior probability P (θ|hrt) resulting from the
integrand in (8) will be used as the prior at time t + 1. By using
the prior that is conjugate to the data model, the resulting posterior
probability is still in the same class of distribution as the prior [24].
Consequently, the integrand in (8) will always take a fixed form if
the conjugate prior is applied, greatly reducing the computational
complexity of evaluating (8).

3.2. Bird Phrase Segmentation by CPD

In the following, we will discuss how to apply the theory in [18] to
our application. For bird phrase segmentation, the input data to the
change point detection is the entropy sequence ht from (2), which
is assumed to be Gaussian. Hence, P (ht|θ) is now a Gaussian pdf
and θ consists of the mean µ and the variance σ2. Gaussian pdf has
a natural conjugate prior since it belongs to the exponential family

[24]. The conjugate prior of a Gaussian likelihood with mean µ and
variance σ2 is a Gaussian-inverse-gamma distribution,

NIG
(
µ, σ2 |η = {m, τ, α, β}

)
=

(
σ2
)−α− 3

2

Γ(α)

βα√
2πτ

exp

{
− (µ−m)2 + 2τβ

2τσ2

}
. (9)

Namely, θ is now parametrized by the hyperparameter set η. As a
result, using this conjugate prior we can obtain the posterior proba-
bility P (µ, σ2|hrt) also in the form ofNIG(µ, σ2|ηrt), where ηrt
denotes the hyperparameter set that is updated by the observations
hrt and thus can be viewed as the sufficient statistic of hrt . There-
fore, the predictive probability in (8) is the integral of the product
of a Gaussian pdf and a Gaussian-inverse-Gamma pdf, which by a
straightforward derivation can be shown to be a Student’s t-pdf,

P (ht|hrt−1) = T
(
ht

∣∣∣∣2αrt−1 ,
αrt−1

βrt−1(τrt−1 + 1)
,mrt−1

)
.

(10)
The Student’s t-pdf is a function of three parameters,

T (x|ν, λ,m) =

√
λ

πν

Γ
(
ν+1
2

)
Γ
(
ν
2

) (
1 +

λ(x−m)2

ν

)− ν+1
2

. (11)

By comparing the conjugate prior and the resulting posterior, the
updating equations for the hyperparameter set ηrt when observing
the new data ht can be easily derived as,

mrt =
τrt−1ht +mrt−1

τrt−1 + 1
, τrt =

τrt−1

τrt−1 + 1
,

αrt = αrt−1 +
1

2
, βrt = βrt−1 +

(ht −mrt−1)2

2(τrt−1 + 1)
. (12)

Using the newly observed data ht and the hyperparameters, we can
obtain the predictive probability through (10) easily without per-
forming numerical integration at every time instant.

The run length transition probability P (rt|rt−1) in (7) can be
modeled if there is a prior knowledge of the distribution of the time
between change points. Let T be a random variable defined as the
time between contiguous change points, which is the length of a call
period or a quiet period between calls. Therefore, the cumulative
distribution function (CDF) FT (t) is bird species-dependent. The
probability that a change point occurs at time t given the previous
run length can be obtained in terms of FT (t)

p(rt = 0|rt−1) =
FT (t)− FT (t− 1)

1− FT (t− 1)
. (13)

Given rt−1, rt could only be 0 or rt−1 + 1. Hence, P (rt = rt−1 +
1|rt−1) is simply 1 − p(rt = 0|rt−1) and the run length transition
probability is fully defined by FT (t). The empirical FT (t) can be
estimated from the database of the target species.

Using (6), (7) and the probability models discussed above, once
r̂t is found to be 0, a change point at t is declared. After marking the
change points, we need to determine if the segment between change
points is a call period or a quiet period. The idea is to compare the
time-averaged entropy of the segment with a threshold γh. If it is
lower than γh, the segment is determined to be a call period; oth-
erwise, it is a quiet period. The threshold γh should be adaptively
adjusted over time, in the way similar to the one used in the energy
detection [6]. The main difference between the proposed method
with the thresholding method in energy detection is that our thresh-
old is less sensitive to the short-term variation in the entropy due to
the bursty noise, since it is updated based on the time-averaged en-
tropy of predefined segments thanks to the change point detection.
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Fig. 2. ROC curves of the entropy-based CPD segmentation, the
entropy-based segmentation with hard thresholding, energy detec-
tion and KL divergence segmentation.

4. EVALUATION

We evaluate the proposed segmentation method on recordings of
Cassin’s Vireo (Vireo cassinii) from a single territory. Thirteen sepa-
rate recordings were obtained between 23 April and 8 June, 2010 in
Amador county, California (38◦29’0”N, 120◦38’04”W) in a mixed
conifer-oak forest at approximately 800 meters elevation. The length
of each recording varies from 72 seconds to 551 seconds, and the to-
tal length is over 50 minutes. Manual annotation was performed to
note the phrase class, and the start and end time of each phrase in the
song. The phrases were categorized into one of the 63 phrase classes
based on both visual examination of their spectrograms and auditory
recognition. There were 852 phrases of Cassin’s Vireo annotated in
the recordings that are not severely overlapped with other species’
calls. For the notable vocalizations by other species, the start and
end time were labeled and are all classified as “others”.

The spectrogram of the recordings were obtained by STFT with
a Hamming window applied. FFT size is 512, and the frame hop
size is 20% of the FFT frame size. The time length w of the time-
frequency block for calculating entropy was set to 138.8ms. The
frequency range of the block was set from f1 = 1.5kHz to fF =
7kHz. The block rate is 144Hz.

First, we evaluate the proposed method by the effectiveness of
capturing bird songs. Let L(·) be the length of a given time inter-
val, and denote Im and Ia as the bird phrase intervals (including the
class “other”) labeled by human and by the proposed method, re-
spectively. Also, let ICm be those time intervals without any human
labels. Define the detection rate PD and the false alarm rate PFA as

PD =
L(Im ∩ Ia)

L(Im)
and PFA =

L(ICm ∩ Ia)

L(ICm)
. (14)

The intersection here means the overlap between two intervals.
Based on (14), the receiver operating characteristic (ROC curve)
of the proposed method is plotted in Fig. 2. The “SS+ECPD” and
“Whitening+ECPD” represent the entropy-based CPD segmenta-
tion with spectral subtraction and spectral whitening filter as the
front-end processing, respectively. Using whitening filter as the
front-end detects songs better than using spectral subtraction. This
is because spectral subtraction is a spectral cleaning technique and
it tends to remove those relatively low-energy background noise.
Some weak bird phrases may also being removed from the spectro-
gram. In order to compare use of CPD over using a hard threshold
to detect the changes of the entropy sequence, the results of using

Table 1. Phrase Classification Rates of Sparse Representation-based
(SR) and Support Vector Machine (SVM) Classifiers Training by
ECPD and Human-annotated phrases (HA)

Trained by ECPD Trained by HA

Testing set SR SVM SR SVM

SS+ECPD 81.97% 79.00% 79.55% 79.93%

Whitening+ECPD 81.04% 76.4% 77.33% 76.21%

hard thresholding to replace CPD are also shown as “SS+ESeg”
and “Whitening+ESeg.” It is clear that in the low PFA region, the
detection rate of using CPD is significantly higher than using a hard
threshold. The difference is insignificant at the high PFA and high
PD region, which is generally not the desired operating region. This
shows that by using CPD the system is able to detect more bird
calls. The time-domain energy detection and the KL divergence
method [9] are also shown for comparison. Both entropy-based
CPD segmentation results outperform these two methods in every
region of the ROC curves.

The segmented phrases of Cassin’s Vireo by the proposed
method were also tested on the bird phrase classifier. The sparse
representation-based (SR) classifier [25] and the support vector ma-
chine (SVM) classifier [26] were considered in the experiment. In
SR classifier, 7 training tokens per phrase were used. Since not
every phrase class has enough tokens for training and testing, 30
classes were considered in the classification experiment. The 7
training tokens for each phrase class were randomly chosen, while
all the remaining tokens were used for testing. The dimension of
the feature vector was set to 128. The multi-class SVM classifier
was implemented using the LibSVM [27]. The classifier for each
training set was trained using a five-fold cross-validation to search
for an optimal pair of regularization factor.

In each classifier, two different training scenarios were consid-
ered. The first training set was chosen from the phrases segmented
by the proposed method, and the other training set was chosen from
the human-labeled phrases. The testing set was always selected from
the phrases generated by ECPD. The classification results are listed
in Table 1. As expected, the classification rates of the experiment us-
ing ECPD training set are mostly higher than the ones using human-
annotated training set, since there are less mismatches between and
training and testing data. However, the differences between the re-
sults of these two scenarios are all less than 4%, which implies that
the ECPD phrases stay fairly close to the human annotated phrases.
The classification rate is up to 81.97% which shows that combining
the proposed method with phrase classifiers is promising in provid-
ing a reliable automated system for analyzing bird recordings.

5. CONCLUSION

We proposed a bird phrase segmentation method by entropy-based
change point detection. To enlarge the difference between the en-
tropy of a call period and the one of a quiet period, a polynomial-
based whitening filter is proposed as the front-end of the segmen-
tation to whiten the spectrogram of the background noise. Instead
of using hard threshold, a Bayesian change point detection is used
to monitor the statistical changes in the entropy sequence. Exper-
imental results show that the proposed method is very effective on
capturing bird calls. It is also shown to be practical to combine the
proposed segmentation method with phrase classifiers. This auto-
mated system would facilitate the analysis of long field recordings.
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