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ABSTRACT 

 

In this paper, we present a novel approach to birdsong phase 

classification using template-based techniques suitable even for 

limited training data and noisy environments. The algorithm 

utilizes dynamic time-warping and prominent (high-energy) time-

frequency regions of training spectrograms to derive templates. 

The algorithm is evaluated on 32 classes of Cassin’s Vireo bird 

phrases.  Using only three training examples per class, our 

algorithm yields a phrase accuracy of 96.23%, outperforming other 

classifiers (e.g. 85.21% classification accuracy of SVM). In the 

presence of additive noise (10 dB SNR degradation), the proposed 

classifier does not degrade significantly, compared to others. 

 

Index Terms— bird phrase classification, limited data, dynamic 

time-warping, noise-robust, template-based 

1. INTRODUCTION 

Birdsongs typically comprise a sequence of smaller units, termed 

phrases, separated from one another by longer pauses. Automatic 

recognition systems of bird sounds are needed, among other things, 

to annotate large amounts of birdsong recording data [1]. 

Automatic bird-phrase recognition is challenging due to within-

class variability, limited training data, and noisy environments [2]. 

Two spectrograms with identical class labels may look different 

due to time misalignment and frequency variation. In real 

recording environments such as in a tropical forest, the data can be 

corrupted by background interference, such as rain, wind, other 

animals or even other birds vocalizing. A noise-robust classifier 

needs to handle such conditions.  

Techniques such as support vector machines [3-4], sparse 

representation [2], HMMs [5-6], and dynamic time-warping 

(DTW) [6-7] have been used for automatic birdsong classification. 

Correlation-optimized DTW has been used in other fields [18-19]. 

Studies in [6] show that, under noisy recording conditions, “good 

performance of the DTW based-techniques requires careful 

selection of templates that may demand expert knowledge”, while 

HMMs need “many more training examples than DTW templates.” 

Some algorithms have been designed to reduce noise in bird songs 

[8-9] based on signal enhancement techniques, such as spectral 

subtraction [10]. Another noise-robust processing technique, 

commonly used in speech processing, is mask-based [11-12]. 

Generally, a mask is estimated from testing samples and used for 

enhancing the test features. In [13], a mask is obtained during both 

training and testing and is used as a feature for species 

classification. Another related idea is the glimpsing model of 

speech where the speech energy is sparse in the time -frequency 

space [14]. The glimpsing model can be valid for bird vocalization 

whose frequency coverage, in general, ranges from 1 kHz – 20 kHz 

but only a few ranges of hundred Hz contain significant energy at a 

particular time. This prominent time-frequency region is 

abbreviated as prominent region throughout this paper. In speech 

processing, a similar approach employs a set of spectro-temporal 

rectangular patches for discriminative word-spotting [15]. 

Template-based classifiers are appealing as time-alignment 

can be integrated with noise-robust processing. In our 

methodology, the Spectrogram-Fusion Algorithm derives a 

prominent region from training samples using DTW, in an iterative 

fashion. A contribution here is that our training procedure 

automatically derives a good template, bypassing manual selection. 

To achieve this, the algorithm aligns all training spectrograms with 

respect to one another and attempts to extract a reliable template 

using the prominent regions. In our classifier architecture, each 

class has one template, which comprises three entities: a 

spectrogram, a prominent region description, and a weighting 

function. A weighting function assigns more weights to reliable 

frames based on short-time correlation. In our testing procedure, 

these three entities are used by a DTW scheme to measure the 

similarity between a given test sample and a class template. The 

class template that achieves maximum similarity is identified as the 

classification output. 

Section 2 briefly presents the database used, while Section 3 

elaborates on the implementation of the proposed classifier. 

Sections 4-6 describe the experimental framework and present 

results along with a discussion and ideas for future work.   

 

2. SOUND DATA 

 

All experiments in this paper use the audio recordings described in 

[2]. Song fragments (phrases) for classification were obtained from 

recordings of Cassin’s Vireo (Vireo cassinii). All recordings were 

obtained in 2010, in a mixed conifer-oak forest, near Volcano, 

California, at a sampling rate of 44.1 kHz. Manual annotation was 

performed using Praat (http://www.fon.hum.uva.nl/praat) to note 

the phrase class. The annotations have been updated to account for 

mislabeling.  In this paper, the subset used for phrase classification 

consists of the same 32 classes as in [2].  

 

3. PROPOSED ALGORITHM 

 

3.1. Spectrographic extraction  

First, the sampling rate is reduced from 44.1 kHz to 20 kHz 

because the energy above 10 kHz is relatively small. A highpass 

filter at 1 kHz cutoff is applied to the signal to eliminate irrelevant 
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signals because the energy of the signals for these birds below 1 

kHz is absent. The range of energy can be specified according to 

the species being classified. The short-time 512-point FFT was 

performed using a frame length of 9 ms and a frames shift of 3 ms; 

then the magnitude of the Fourier transform is obtained while the 

phase information is discarded, resulting in a spectrogram.  
 

 

Fig. 1: Spectrograms of clean (a - c) and noisy samples (d - f). 

Spectrograms in the same columns (e.g. (a) and (d)) have the 

same class labels. 

3.2. Prominent time-frequency regions 

When a birdsong recording is corrupted by background 

interference, the accuracy of classifiers may degrade significantly. 

Fig. 1 shows examples of spectrographic mismatch for some 

random phrases extracted from a real recording. Spectrograms of 

the same columns have the same class labels (i.e. Fig. 1a and Fig. 

1d are from the same class). The top images represent clean 

spectrograms and the bottom images are spectrograms of the same 

phrase class as above but corrupted by background interference.  

High-energy regions in both clean and noisy spectrograms 

form a distinctive feature of a given class, as these regions are 

somewhat invariant when corrupted by noise. A low energy region, 

on the other hand, is not a reliable discriminative cue for 

classification. For example, the region above 5 kHz in Fig. 1b has 

low energy while this region apparently has high energy in Fig. 1e 

resulting in a spectrographic mismatch. However, if we reduce the 

scope of attention to a portion of the spectrogram image (rather 

than the entire image), the mismatch can be reduced. In this 

example, Fig. 1b and Fig. 1e are more similar if only the region 

below 5 kHz is considered. 

In our algorithm, we use a better representative region rather 

than a rectangular patch. For example, the region enclosed by the 

dotted boundary in Fig. 2d represents the prominent region of the 

spectrogram in Fig. 2a. In this paper, we denote the prominent 

region of a spectrogram S as R = (S). Let S be a spectrogram and 

Si denote the ith column vector of S or simply the vector 

representing the spectrum at frame i. To derive R = (S), for each 

frame spectrum Si, we first determine the maximum amplitude i = 

max(Si), and assign a value 1 to Ri(k) if  Ri(k) is greater than a 

threshold 0.2i, where k is the frequency index. Then we expand 

this interval by 0.5 kHz. A more sophisticated algorithm to derive 

the prominent region can be explored in subsequent studies; the 

focus of this paper is to present the effectiveness of the prominent 

region rather than studying the optimal region derivation. Fig. 2e 

and Fig. 2f illustrate the pixels of the spectrogram from Fig. 2b and 

Fig. 2c, respectively, supported by the prominent region shown in 

Fig. 2d. The process of deriving a prominent region is performed 

only for the training template; we do not derive the prominent 

region of the test data. 

 
Fig. 2: Illustration of prominent regions. For a reference 

spectrogram (a), the prominent region is the region enclosed by 

the dotted boundary in (d). For spectrograms (b) and (c), Figs. 

(e) and (f) shows the pixels in the corresponding prominent 

regions, respectively.   

 

3.3. Dynamic time-warping (Procedure I) 

Two spectrograms, S(1) and S(2) , of the same phrase may have 

different durations that cannot be aligned by a simple shift so a 

dynamic time warping (DTW) [16][20] is incorporated into our 

framework. In [17], the cosine similarity is shown to be a good 

metric for a DTW scheme. Let us define a notation (u,v) =  
    

      
 as 

the cosine similarity degree between vectors u and v.  The value of 

the cosine similarity is always in the range of [0,1] if all elements 

of u and v are non-negative; the closer to 1, the more similar u and 

v are. In our algorithm, the cosine similarity is used in our DTW 

scheme to measure the overall similarity of two spectrograms. 

 

Procedure I: Dynamic time-warping (p,X',c) = DTW(M,R,w,X) 

 i and j are the time indices of the reference M (with NM 

frames) and test X (with NX frames),  respectively. 

 C(i,j) is the cosine similarity between the ith frame of M and 

the jth frame of X. 

 P(i,j) is the intermediate cumulative score.  

 The operator  is the element-wise multiplication.  

 c is the vector of frame-wise cosine similarities of M and X'. 

1) C(i,j) =  (MiRi, XjRi) 

2) P(1,j) = C(1,j) for j  floor(0.1NX)  

3)  wi =  wi/(w1 + w2 + ... +    
) 

      P(2,j) = max{P(1,j)+w2C(2,j), P(1,j-1) + w2C(2,j)} for j>1 

      Recursive step 

               P(i-1,j-2) + 0.5wiC(i,j-1) + 0.5wiC(i,j) 

P(i,j) = max     P(i-1,j-1) + wiC(i,j)  

               P(i-2,j-1) + wi-1C(i-1,j) + wiC(i,j) 
 

4) p = max{P(NM,j)},  floor(0.9NX)  j  NX 

5) Backtrack the optimal path and obtain X' accordingly. 

    ci =  (MiRi, Xi'Ri) 

 

DTW is used to find the optimal time warping function 

between a test spectrogram X and a reference spectrogram M so 

that the resulting spectrogram X' will have the same number of 

frames as M. Our DTW scheme is described in Procedure I and 

explained step by step as follows. 1) The local score C(i,j) of the 

DTW is the frame-wise cosine similarity between the ith frame of 

M and jth frame of X. The cosine similarity is not computed over 

the entire frequency range, but only on the range determined by the 

Fig. 1 Spectrograms of clean and noisy recording 
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prominent region of the reference frame Ri. 2) The optimal 

warping function is constrained to begin within the first 10% of the 

test frames. 3) A given reference frame is allowed to align with up 

to two test frames and vice versa; for this reason we employ DTW 

type I [16]. In computing the cumulative score, each reference 

frame is weighted differently based on the frame weight input 

vector w of the DTW such that the weights sum to 1 (  i
  

i  =1). 

Depending on situations, the weight vector w can be determined in 

several ways, some of which will be described in Section 3.4. 4) 

The optimal path is backtracked ensuring that at least 80% of the 

test frames are accounted for. 5) Along with the average similarity 

p, the DTW also outputs the aligned spectrogram X' and the 

corresponding vector of frame-wise similarities c. All 3 outputs 

(p,X',c) are needed for the training process while only the overall 

similarity p is needed for testing.   

 

3.4. Training procedure (Procedure II) 

It is important to design an algorithm that extracts common 

features from training samples and discards noise components, 

resulting in a good template. A template is defined as a collection 

of three attributes: a spectrogram reference M, a prominent region 

R and a weight function w. Our spectrogram fusion algorithm takes 

N training spectrograms per phrase class, T  = {T(1) ,T(2) , ... ,T(N)},  

and outputs a template model (           that represents common 

features among the training samples in each case. This procedure is 

performed individually for each class. 

 

Procedure II: Spectrogram Fusion (          = (T)  

n  arg a 
n

 
a e
(n  

      (n   ,       (n  ,       (n    

 

Procedure II is explained as follows. 1) The reference 

template (S,R,w) is initialized with one training sample, say T(n). 

Specifically, S = T(n), R = (T(n)), and w is determined by the frame 

amplitudes. 2) This template is used as a reference in the DTW 

(Section 3.3) and each training sample is used as a test.  In other 

words, we perform (p(m),   (m), c(m))  = DTW(S,R,w, T(m)) for all m 

    2  …   . Then the each ith frame of the updated spectrogram 

Si(k) is taken to be the median values of    i

(  
(k),    i

(2 
(k),  ... , 

  i

(  
(k). The purpose of this operation is to align invariant 

components and to discard outliers contributed from noise or 

within-class variability. The updated prominent region R is derived 

accordingly from the new S. The weight should be assigned to the 

frames that have high similarities, so we use ci to compute the new 

weight wi. This new template (S,T,w) is then used as a reference in 

the DTW to generate another new template by the same procedure. 

We found that using only 3 iterations is sufficient for this data set. 

3) After the final iteration, we compute the average similarity     
   

 

between the derived template and each training sample to measure 

the effectiveness of the final template. If an unreliable (e.g. noisy) 

spectrogram happens to be the initial template, the resulting model 

maybe unreliable. For this reason, the Spectrogram-Fusion 

Algorithm performs N trials with different initial templates from 

the same class. Finally, the algorithm selects the template from the 

trial whose average similarity pave is the highest. The template 

(          generated from this trial is assigned for that particular 

phrase class.  

 
                       frame index 

Fig. 3: Illustration of Procedure II. Training samples are in the 

first row. The initial and final templates are shown in the 

second and third row, respectively. For the first iteration, the 

template is based on only the information of sample (a) while 

templates of each subsequent iteration are based on all samples 

(a-c). Figs. 3d and 3g are template spectrograms, Figs. 3e and 

3h are prominent regions, and Figs. 3f and 3i are frame 

weights.  

Fig. 3 illustrates Procedure II that uses spectrograms (a), (b), 

and (c) as a training set (T = {a,b,c}). Consider Trial 1 where Fig. 

3a is selected as the initial reference template. The template 

attributes are derived as S = a, R = (a), and w is determined by the 

frame amplitudes of S. These initial spectrogram, prominent 

region, and weight function are shown in Figs. 3d, 3e, and 3f 

respectively. After 3 iterations (including (b) and (c)), the final 

template attributes are shown in Figs. 3g, 3h, and 3i. In fact, the 

final template of this trial  (Trial 1) yields the highest pave among 

all 3 trials, so this final template is essentially the output of 

Procedure II. Note that although all training spectrograms are 

corrupted by noise, the Spectrogram-Fusion Algorithm is able to 

capture most of the reliable content. In Fig. 3g, although some 

noise components remain in the final spectrogram template, they 

will not affect the performance of the DTW if they are not in 

prominent regions. 

 

3.5. Testing Procedure  

For a given segment, the spectrogram is derived as described in 

Section 3.1. Then the spectrogram is used to compute the similarity 

with each class template as described in Section 3.3. The overall 

similarity between a template and a test is in the range of [0,1]. The 

class that gives the highest similarity is identified to be the 

classification output.  

for trial n = 1:N 

1) S = T(n), R = (S), wi = max(Si) where Si is the ith frame of S 
 

    2) Recursive step: repeat the following blocks for 3 times 

    for m = 1 to N 

           (p(m),   (m), c(m))  = DTW(S,R,w, T(m)) 

   end 

   Si(k) = median(  i

(  
(k), ... ,   i

(  
(k)) for each i and k 

   R = (S), ci,ave = 
 

 
   

   
 ,           

     

 

    

      3)     
   

 = 
 

 
  

   
   ,      = S,      = R. 

end 
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4. EXPERIMENTAL SETUP AND EVALUATION 

FRAMEWORK 

 

4.1. Comparison classifiers 

Comparison algorithms for automatic birdsong classification are 

based on support vector machine (SVM) and sparse representations 

(SR). Both have been shown to be effective for limited training 

data [2]. In this paper, we compare the performance of the 

proposed classifier to those of SVM and SR. In [2], it has been 

shown that SR and SVM perform better with a higher feature 

dimension. Therefore, we use the maximum feature dimension for 

the SR and also use that number for the SVM classifier. The 

implementations are the same as described in [2].  

 

4.2. Evaluation framework 

The evaluation framework is the same as described in [2]. In short, 

we evaluated the performance of the classifiers under limited data 

conditions. We varied the number of training samples from 3 to 7 

(for each of the 32 classes) and used the remaining samples (800-

1000) for testing.  In each case, we conducted 5 sub-experiments 

(training samples randomly selected) and averaged their results. 

4.3. Testing conditions  

We conducted two experiments to evaluate the performance of the 

proposed algorithm. In Experiment 1, we used the same recordings 

as in [2] (see Section 2). Experiment 2 evaluated all 3 classifiers in 

the presence of noise. The background noise was recorded from the 

ambient environments in the same location as when the birdsong 

occurred. There are total of 7 noise files (20 minutes long). These 

files contain birdsongs from other species as well as ambient noise. 

For a given phrase segment, the noise file ID and time location 

were selected randomly. Then the noise portion is scaled to 

generate a pseudo signal-to-noise ratio of 10 dB. Note that we 

cannot conclude the SNR is exactly 10 dB because the original 

files might contain noise energy as seen previously in Fig. 1. We 

found that enhancing the signal by spectral subtraction improves 

the performance of the SR and SVM classifiers. Therefore, for a 

fair comparison, we use the standard spectral subtraction from 

VOICEBOX [21] as a noise-robust processing tool before 

generating features for the SR and SVM classifiers. 

 

5. RESULTS AND DISCUSSION 

 

Figure 4 shows the results of Experiment 1 (original recordings) 

and Experiment 2 (noise added). Overall, the proposed algorithm 

always outperforms SR, while SR always outperforms SVM. The 

accuracy of SR and SVM generally increases when more training 

samples are used. Our template-based classifier is not highly 

sensitive to the number of training examples. Using only 3 training 

samples, it achieves an accuracy of 96.23% and 79.23% in fairly 

clean and noisy conditions, respectively. In Experiment 2, the 

proposed algorithm significantly outperforms both SR and SVM. 

There are several possibilities that account for such degradation in 

SVM and SR. First, the time alignment of the testing spectrogram 

and the SVM and SR models might not be accurate while DTW in 

the proposed algorithm reduced the time misalignment effect. 

Second, SVM and SR have certain optimal parameters and training 

conditions. For example, the kernel, the feature dimension and the 

cross-validation configuration might be sensitive factors to SVM.  

Third, noise estimation used in spectral subtraction is not 

sufficiently accurate. Template-based classifiers, on the other hand, 

can exclude irrelevant signal components based on the given 

template (e.g. using the prominent region). Note that pilot 

experiments using  DTW with no prominent region identification 

showed worse performance than the proposed algorithm. 

 

 

Fig. 4:  Experimental results: the solid lines are for Experiment 

1 and dotted lines, for Experiment 2.  

 

6. RELATION TO PREVIOUS WORK 

 

In this paper, we develop a birdsong phrase classifier that is robust 

to 1) duration variability, 2) limitedness of training data, and 3) 

noisy environments. For birdsong classification, DTW-based 

approaches [6-7] and SVM-based classifiers [3-4] can deal with 

limited training and duration variability, but require careful 

selection of training samples. Here, we propose a novel 

Spectrogram Fusion Algorithm that bypasses manual selection of 

training samples. Another novelty of this work is the way we use 

prominent time-frequency regions for achieving noise robustness 

in training as well as testing. Our technique is related to the 

“ordered s ectro-te  oral  atch feat res” for keyword spotting 

[15], but employs a more systematic and knowledge-based 

approach for deriving the prominent regions.  

7. CONCLUSIONS  

 

A template-based algorithm for birdsong phrase classification is 

proposed. In a 32-class bird-phrase database, the proposed 

classifier obtains the highest classification accuracies compared to 

the SR and SVM classifiers. Using fairly clean recordings, our 

proposed algorithm achieves 96.23% outperforming SR (87.66%) 

and SVM (85.21%), with only three training examples per class. 

Using noisy recordings where the signals are degraded by 

approximately 10 dB, the performance of the SVM and SR 

degrades dramatically compared to the proposed algorithm. Our 

future work will include evaluations of the proposed classifier with 

other databases and different noise conditions. We are also 

interested in modifying our algorithm for keyword spotting in 

noise-robust ASR. 
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