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ABSTRACT

The performance of a sparse representation-based (SR) classifier

for in-set bird phrase verification and classification is studied. The

database contains phrases segmented from songs of the Cassin’s

Vireo (Vireo cassinii). Each test phrase belongs to one of 33

phrase classes – 32 in-set categories, and 1 collective out-of-set

category. Only in-set phrases are used for training. From each

phrase segment, spectrographic features were extracted, followed

by dimension reduction using PCA. A threshold is applied on the

sparsity concentration index (SCI) computed by the SR classifier,

for in-set bird phrase verification using a limited number of training

tokens (3 - 7) per phrase class. When evaluated against the nearest

subspace (NS) and support vector machine (SVM) classifiers using

the same framework, the SR classifier has the highest classification

accuracy, due to its good performances in both the verification and

classification tasks.

Index Terms— Bird phrase classification, in-set verification,

sparse representation, limited data, l1 minimization.

1. INTRODUCTION

Machine-based bird song recognition facilitates animal behavior re-

search of birds [1], and the measurement of biodiversity using bioa-

coustics recordings [2], which is especially useful in environments

where visual identification is difficult. Applications include species

identification [3, 4, 5, 6], individual bird recognition [7], and sylla-

ble or phrase classification of songs with complex lexicons [8, 9].

As “soundscape ecology” [10] receives greater attention, bird song

applications will gain importance and popularity.

Classifying particular bird calls or song elements becomes es-

pecially challenging when the song repertoire is diverse, and com-

prises a large number of variant syllables or phrases; some species

have thousands of distinct phrases in their lexicons [11]. The occur-

rence frequencies of individual bird song elements often resembles a

”Zipf curve” [12], where a few phrases are observed frequently, but

the majority of phrases are rare. The amount of training data can be

further limited due to the opportunistic nature of bird song collection

in geographical locations of interest, and the availability of human

experts to identify and annotate the phrase types in these bird song

recordings. Hence, besides the ability to perform accurate bird song

phrase classification with limited data, the ability of an automated

classifier to detect new phrase types that are unseen in the training

set is also important. This could potentially reduce the amount of

data that requires manual inspection in new audio recordings.

This work was supported in part by National Science Foundation Award
No. 0410438 and IIS-1125423.

Since bird phrase classification is similar to automatic speech

recognition (ASR), techniques that were proposed for ASR have also

been applied to bird songs. For example, techniques employing Hid-

den Markov Models (HMMs) [8] and neural networks [13] have

shown good acoustic unit recognition performance in bird songs.

However, these models generally require a substantial amount of

data for parameter estimation. In our previous study [14], we applied

a sparse representation-based (SR) classifier on a closed-set bird

phrase classification task using a few training samples per phrase

class. The work is inspired by [15] which proposes this SR tech-

nique for face recognition and achieves high accuracies with just 7

images per subject. [14] is the first work to use the SR classifier for

automated bird song recognition.

In this paper, we expand the classification task to distinguish

between in-set (seen in training set) and out-of-set (unseen in train-

ing set) phrase classes. Out-of-set phrase classes are collectively

grouped under the “Others” category. In-set bird phrase verification

is performed by applying a threshold on a confidence measure of

the classification output. The confidence measure computed from

the SR classifier is the sparsity concentration index (SCI), which

represents the maximum concentration of the computed sparse co-

efficients on a single in-set class. The SCI, first defined in [15], is

shown to be a robust confidence measure in an outlier full/partial

face image rejection application (i.e. detect images that do not be-

long to any of the subjects found in the training set), even in the

presence of occlusions [16]. We compare the performance of the

SR classifier to the support vector machine (SVM) [9, 17], and the

nearest subspace (NS) [15, 18] classifiers, which have demonstrated

good classification accuracies with limited training data.

2. DATA

The bioacoustic database is the same as that used in [14]. The

song fragments (phrases) were segmented from audio recordings of

Cassin’s Vireo (Vireo cassinii). Fig. 1 shows the spectrogram of a

song segment containing three different phrases. A Cassin’s Vireo

song is described as “... a jerky series of burry phrases, separated by

pauses of 1 s. Each phrase is made up of 2 to 4 notes [syllables], with

song often alternating between ascending and descending phrases

...” [19]. Songs from two males on two different territories in a

conifer-oak forest in California were recorded, and the phrase reper-

toires of these two birds were similar, though not identical. Manual

inspection was done using Praat (http://www.fon.hum.uva.nl/praat)

to identify the phrase class, and mark the start and end times of each

phrase in the song. The phrase classes were identified based on both

auditory recognition and spectrogram inspection.

Recent changes to the annotations or textgrids of this data set
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Fig. 1. A spectrogram of a Cassin’s Vireo song segment. The phrase (Phr) boundaries are marked by blue lines, while the syllable (Sy)

boundaries are marked by red lines.

include merging a few very similar classes to remove redundant

phrase types, and corrections of wrong class labels in the annota-

tions/textgrids. Each phrase segment or token is extracted from the

original WAV file based on its start and end times in the manual an-

notations. There are 63 phrase classes, each with 1 to 69 tokens. In

this study, the more frequently observed 32 phrase classes that have

at least 10 tokens (these are the classes used in the closed-set classi-

fication task in [14]), consist of 1034 tokens, and they form the in-set

training and test data; the 82 tokens of the remaining 31 classes form

the out-of-set test data. For more information, please refer to [14].

The recordings and annotations for this study are available online at

http://taylor0.biology.ucla.edu/al/bioacoustics/.

3. VERIFICATION AND CLASSIFICATION FRAMEWORK

Feature
Extraction

In-set
Classification

In-set Verification
by Applying a
Threshold on q

Input
Phrase

O
q

b Class
Label

Fig. 2. The verification and classification framework

The block diagram in Fig. 2 illustrates the common framework

used with each classification algorithm (SR, SVM, or NS) to per-

form in-set bird phrase verification and classification. We also name

this joint task as the 33-phrase class (32 in-set classes + 1 out-of-set

class) bird phrase classification task. Note that no token from the

out-of-set classes is used for training. A feature vector, b is extracted

from the input bird phrase audio segment, followed by the in-set

classification. The classifier outputs an in-set class label – O, and a

confidence or uncertainty measure – q, regarding the correctness of

O. In-set bird phrase verification is performed by applying a fixed

threshold on q. If q is a confidence measure, and it is larger than

the threshold, O will be the final class label attributed to the input

bird phrase, else it is classified to “Others”. The feature extraction

procedure, and the implementation of the SR, SVM, and NS clas-

sifiers and the respective confidence or uncertainty measure used in

our experiments are described in the following subsections.

3.1. Feature Extraction

Since spectrograms contain discriminative information that aids

manual phrase annotation, we derived the features explicitly from

the time-frequency spectrogram of each phase segment. The fea-

ture extraction methodology follows that used in our previous study

[14]. A file-duration-dependent frame shift is calculated, so that

the spectrogram of each phrase token (of variable duration) always

contains 64 frames in time. Only the 128 frequency bins between

1.5 and 6.5 kHz in the spectrogram are used, where most of the

bird phrase acoustic energy falls within. For each spectrogram, the

magnitudes are log-compressed and its dynamic range is normal-

ized. The normalized spectrographic image is reshaped into a 1-D

feature vector, followed by a principal component analysis (PCA)

to reduce its dimension, d to 32, 50, and 128 (corresponding to an

image resizing factor of 1/16, 1/12, and 1/8, respectively). We vary

d to investigate the classifiers’ performance dependency on feature

dimension. Finally, the d × 1 feature vector is normalized to unit

length. The same feature extraction procedure is used in all the

classification techniques evaluated for a fair comparison.

3.2. Classification Algorithms

3.2.1. Sparse Representation-based (SR) Classifier

The SR classification algorithm summarized in Eqs. (1) – (3), fol-

lows “Algorithm 1” described in [15] for a face recognition appli-

cation. First, the SR classifier seeks a sparse linear combination of

feature vectors or exemplars present in the training set that best rep-

resent the test feature vector, b. This sparse linear combination is

found by solving for a sparse vector x via the l1 minimization con-

vex optimization problem defined in Eq. (1), where each column

in matrix A∈Rd×m, contains one exemplar (corresponding to one

token) from the training set. Thus, m = Kn in our study, where

K(=32) is the total number of in-set phrase classes, and n is the

number of training tokens per class. The l1 solver used to solve Eq.

(1) is the l1-MAGIC MATLAB toolbox [20], with ε set to 0.05.

min ‖x‖1 subject to ‖Ax− b‖2 ≤ ε (1)

ri = b−Aδi(x) , for i = 1, 2, ..., 32. (2)

OSR = argmin
i

‖ri‖2 (3)

SCI(x) =
K maxi ‖δi(x)‖1/‖x‖1 − 1

K − 1
∈ [0, 1] (4)

After the sparse representation is found, the residual vector, ri be-

tween b and Aδi(x) is computed in Eq. (2). The δi(x) function

sets all x coefficients to zero, except those corresponding to class i’s
training exemplars. The class that yields the minimum residual norm

is the classification decision OSR, as shown in Eq. (3).

For the SR classifier, the sparsity concentration index (SCI(x))

in Eq. (4), is the confidence measure used for in-set bird phrase ver-

ification. The SCI(x) has been successfully used for outlier face re-

jection in [15, 16]. This confidence measure indicates the maximum

concentration of the computed sparse x coefficients are on a single

in-set class. At one extreme, SCI(x)=1 when only the coefficients of

one class are activated in x. At the other extreme, SCI(x)=0 when

the coefficients of all classes are equally activated. In general, an in-

set bird phrase should have a sparse representation where most of its

non-zero coefficients corresponds to exemplars from its correspond-

ing phrase class. On the other hand, an out-of-set bird phrase should

have sparse coefficients distributed across multiple in-set classes,

since it is usually not well-represented by any single class.
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Fig. 3. ROC curves for in-set bird phrase verification with d = 50, for (a) n = 3, (b) n = 5, and (c) n = 7, where d is the dimension of the

feature vector retained after PCA, and n is the number of training tokens per class.

3.2.2. Support Vector Machine (SVM) Classifier

The SVM classifier is implemented using the LIBSVM [21] – a soft-

ware library for support vector machines. The confidence measure,

q, used for in-set bird phrase verification is the probability estimate

of the most-likely class computed by LIBSVM. The Gaussian radial

basis function (RBF), K(y, z) = exp(−γ‖y − z‖2) is the selected

kernel, and a five-fold cross-validation (CV) training strategy is used

to select the best penalty parameter, C from {2−1, 20, ..., 27}, and γ
from {2−4, 2−3, ..., 25}. This parameter tuning is done for all pairs

of n and d, except when n = 3 and d = 128. For this pair, only C is

tuned using CV, with a fixed γ = 4, because a significant decrease

(> 20% in absolute difference) in the classification accuracy is ob-

served with a CV-tuned γ value, due to over-fitting to the small set of

training set when d is large. We have also experimented with a linear

kernel function, and it gives better classification accuracies than the

RBF only at d = 128 when n = 3, 4, and 5. Even in these cases, the

linear SVM still performs significantly worse than the comparative

algorithms. Hence, only the RBF SVM results will be presented.

3.2.3. Nearest Subspace (NS) Classifier

The NS classifier [22] finds the class subspace that best represents

the test vector, b. The class that yields the minimum residual norm

between b and all class-subspace projected b, is the output of the

NS classifier, ONS , as shown in Eqs. (5) and (6), where Pi is the

matrix containing the basis vectors of class-subspace i. Please refer

to [14] for the computation of Pi. The uncertainty measure used for

in-set bird phrase verification is the minimum residual norm, i.e. q
= ‖rONS

‖2. If ‖rONS
‖2 is less than the threshold, ONS will be the

output class label.

ri = b−PiP
T

i b (5)

ONS = argmin
i

‖ri‖2 (6)

4. RESULTS

To evaluate the performance of the classifiers under limited data con-

ditions, the amount of data for training is varied, with n = 3, 4, ...

and 7 training tokens per class. For each value of n, five indepen-

dent experiments were conducted such that a random set of in-set

bird phrase tokens is used for training in each experiment. For each

classifier, the averaged results over these five experiments (for each

pair of n and d) are presented in this section.

4.1. ROC Curves for In-set Bird Phrase Verification

The performance of the classifiers for in-set bird phrase verification

are evaluated based on the receiver operating characteristic (ROC)

curve, which plots pDet – the proportion of in-set phrases that is

correctly identified as in-set (true positives), versus pFA – the pro-

portion of out-of-set phrases that is incorrectly identified as in-set
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Fig. 4. ROC curves for in-set bird phrase verification with n = 5, for

(a) d = 32 and (b) d = 128.

(false positives). To show the performance trends of the classifiers’

with different values of n and d, Fig. 3 plots the ROC curves of each

classifier when n is varied at a fixed d = 50, while Fig. 4 plots the

ROC curves when d is varied at a fixed n = 5. In Fig. 3, it is ob-

served that the performance of all classifiers generally improves as n
increases. It is also observed in Fig. 3 that when d = 50, the SR clas-

sifier has the highest pDet for pFA < 0.2 among the other classifiers,

and the NS classifier has the second-best performance, with an ROC

curve that is very similar to the SR classifier’s at higher pFA. From

Fig. 4, we found that the SR classifier’s in-set bird phrase verifica-

tion performance has a greater improvement over the NS classifier

when d = 128 (Fig. 4(b)) compared to d = 50 (Fig. 3(b)). At d = 32,

the SR classifier’s performance is slightly worse than the NS’s for

pFA > 0.2 % (see Fig. 4(a)). The SVM classifier performs signifi-

cantly worse than the SR and NS classifiers in this in-set bird phrase

verification task for all cases of n and d investigated.

4.2. Classification Accuracy for the 33 Phrase Classes

The classification accuracy for the 33 phrase classes, Acc, of each

experiment is calculated by taking an average of the percentage of in-

set bird phrases that is correctly classified (
Cin

Nin
) and the percentage

of out-of-set bird phrases that is correctly labeled as “Others” ( Cout

Nout
),

as shown in Eq. (7). Cin and Cout is the number of in-set and out-

of-set bird phrases correctly classified, respectively, while Nin and

Nout is the total number of test tokens belonging to the in-set and

out-of-set, respectively.

Acc = 0.5
(

Cin

Nin
+ Cout

Nout

)

% (7)

Taking the average of these two components ensures that an equal

importance is placed on the classification accuracies of both in-set

and out-of-set test phrases, which is necessary since the number of

in-set test tokens (Nin = 1034−32n>800) is much greater than the

number of out-of-set test tokens (Nout = 82). Otherwise, the results

would be biased towards the classification accuracy of in-set phrase

tokens, and the selected threshold would yield an undesirably high

pFA (= 1 − Cout

Nout
) for the verification task. For each pair of n and

d, the verification threshold is varied between 0 and 1, in steps of

0.005, and the value that yields the highest average Acc (over the
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Table 1. Average Acc (%) for different values of n and d. The

highest value for each case is boldfaced.

n Classifier d = 32 d = 50 d = 128
SR 81.8 83.6 N.A.

3 SVM 73.5 74.8 72.4

NS 79.8 79.6 82.3

SR 83.9 87.0 88.6

5 SVM 75.3 76.8 77.3

NS 82.0 84.7 84.7

SR 85.5 88.2 89.6

7 SVM 78.7 80.8 81.6

NS 84.5 86.4 86.4

five experiments) is the threshold used for each classifier. Table 1

shows the averaged Acc obtained with different values of n and d.

From Table 1, the SR classifier achieves the highest Acc for this

33-class bird phrase classification task in all cases, except when n =

3 and d = 128 for which the SR classifier is not able to generate a

classification result. This is because when n = 3 and d = 128, there

are more columns than rows in matrix A such that Eq. (1) becomes

an over-determined linear system, and the l1-solver used is usually

unable to find a feasible x solution.

Note that the Acc values are generally lower than the closed-

set classification accuracies reported in [14] for all classifiers, due

to additional verification errors. This is especially true for the SVM

classifier, thus its Acc is much lower than the SR and NS classifiers

in all cases. In general, the improvement in Acc of the SR classifier

over the second-best performing algorithm (NS classifier) increases

with d at a fixed n, due to the SR classifier’s increasing verification

performance gain over the other algorithms. This is also true in the

case of n = 7, when the SR classifier’s 32-class, in-set classification

accuracy (prior to in-set verification) is just slightly higher than the

NS and SVM classifiers (these classification results are not shown

here but reported in [14]). On the other hand, at d = 32, even though

SR’s verification performance is slightly worse than NS’s (from the

previous ROC curves), the SR classifier still has a higher Acc due to

its higher in-set bird phrase classification accuracies [14].

5. DISCUSSION

We expect the SCI computed by the SR classifier to be a robust mea-

sure for the verification task because the sparse x vector is com-

puted with full (global) information from all phrase classes in the

training set [15]. In contrast, each class residual of the NS classi-

fier is separately computed using information only from its respec-

tive phrase class; while LibSVM’s probability estimates [23] are ob-

tained by combining pair-wise class probabilities derived from each

one-against-one binary classifier in the multi-class SVM.

For our in-set bird phrase verification task, the SCI yields the

best ROC curve at d = 128, and a comparable performance to the NS

classifier’s residual measure at d = 32. The additional between-class

differences that are retained in the training exemplars when a larger

d is used, result in higher sparse weights concentration on the correct

in-set class, which in turn improve the reliability of the SCI measure

for this verification task. However, for the SR algorithm, the maxi-

mum d allowed is also upper-bounded to the total number of train-

ing tokens. One possible way to increase d is to generate additional

training tokens from existing ones by perturbing the time boundaries

of the token extracted. This might also improve classification accu-

racy when an automated bird phrase segmentation algorithm is used,

whose segmented phrase boundaries could be less consistent within

the same phrase class. This will be explored in future work.
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Fig. 5. Acc variation with verification threshold for an experiment

with n = 5 and d = 50.

The 33-phrase class classification accuracy, Acc of the SR algo-

rithm is also the least sensitive to verification threshold perturbations

compared to NS and SVM. This is shown in Fig. 5, which plots the

variation of Acc with the threshold used in each classifier, for a par-

ticular experiment with n = 5 and d = 50 (similar trends in Acc are

observed at other values of n and d). The Acc of the SR classifier

has the broadest peak lobe, while the NS classifier has the narrowest.

Since the completion of this study, new data from more Cassin’s

Vireo individuals (5 different birds) were recorded. The annotators

noted that the spectrograms of the 32 in-set phrase classes in the new

data are similar to those used in this study. Hence, we expect similar

performance trends to hold for the new data.

6. CONCLUSION

The performance of an SR classifier for an in-set bird phrase verifi-

cation and classification task is studied. The data set consists of seg-

mented Cassin’s Vireo phrases. The task is to classify these phrases

into one of the 33 phrase classes – 32 in-set phrase classes, and 1 col-

lective out-of-set class for the remaining phrase classes. The training

set contains only bird phrases from the 32 in-set phrase classes. The

sparsity concentration index (SCI) computed by the SR classifier,

which was proposed for an outlier face rejection application [15, 16],

is the measure used for in-set bird phrase verification. Compared to

the NS classifier’s residual, and the SVM classifier’s probability esti-

mate, the ROC curves show that when the feature dimension is large

enough, the SR’s SCI is a more reliable measure for distinguishing

between in-set and out-of-set bird phrases. The SR classifier also

outperforms the NS and the SVM classifiers in the classification ac-

curacy for these 33 phrase classes, due to good performances for

both in-set verification and classification.

7. RELATION TO PRIOR WORK

In this work, an SR classifier is used to perform in-set bird phrase

classification, as well as in-set bird phrase verification. This is an

extension of our previous work in [14], which to our best knowl-

edge, is the first paper to evaluate the exemplar-based SR classifica-

tion technique on a bird sound recognition application. In [14], the

SR classifier is used to classify bird phrases from the in-set (closed-

set) classes only. The SR classification algorithm and the SCI mea-

sure were first proposed by Yang et. al. [15] for face recognition

and outlier face rejection, respectively. In [15], the performances of

the SR classifier for in-set face recognition and outlier face rejec-

tion are evaluated separately. New contributions of the present study

include – (1) evaluating the SCI for in-set bird phrase verification,

and investigating its performance dependency on feature dimension,

(2) showing the overall classification accuracy of a complete system

that performs both in-set bird phrase classification and verification,

and (3) a sensitivity analysis of the overall classification accuracy to

threshold variations during verification.
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