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ABSTRACT

Many species of birds in Americas vocalize during nocturnal migra-
tion flights. Acoustic detection and classification of the calls show
potential for study of the natural history of these migrant birds. In
particular, information about the species’ composition and num-
ber of birds involved in migration movements may be obtainable
through acoustic techniques. Other methods such as radar moni-
toring may have capability only to assess the number, but not the
composition. Mel Frequency Cepstral Coefficients-Gaussian Mix-
ture Model-based methods (MFCC-GMM), Mel Frequency Cepstral
Coefficients-Hidden Markov Model-based methods (MFCC-HMM)
and spectrogram correlation-based methods have been proposed to
automate the recognition/classification of the nocturnal flight calls.
Here we investigate the choice of Pseudo Wigner-Ville Transform
(PWVT) on MFCC-HMM-based classifier and correlation-based
classifier performance. We use a collection of recordings of noctur-
nal flight calls of several species of thrushes and other bird species
with similar calls to evaluate and compare classifiers.

Index Terms— Acoustic signal detection, spectrogram, classi-
fication algorithm

1. INTRODUCTION

Automated recognition of animal sounds from continuous field
recordings assume significance in a variety of situations, including
population monitoring, the study of animal behavior, prevention
of harmful human/animal interactions, in biological studies, and
ornithology [1], [2]. These recordings are often noisy or clipped,
calling for the use of reliable automatic techniques rather than con-
ventional manual techniques. Longer battery life and cheap memory
have dramatically increased the amount of audio to analyze and
hence manual inspection of spectrographs is often error-prone and
involves multiple human experts which makes the identification un-
reliable and expensive. Thus there is a need for automated analysis
techniques to generate reliable constituent labels for each sound [3].

Statistical classifiers applied to various characteristics of marine
mammal sounds have been proposed [4]. The cross-correlation of
spectrograms has been used to recognize marine mammal vocaliza-
tions [5], [6]. Machine identification of bird sounds has also been
suggested to help prevent bird/aircraft collisions at airfields [7], with
the classification based on speech analysis techniques. Another ap-
plication of automated acoustic monitoring is in regards to noctur-
nal flight calls of migrant birds [8], [9], [10], [11], [12] and the
cross-correlation of spectrograms has been used [13] for the pur-
pose of studying the animals’ range and distribution. Automated
acoustic detection of nocturnal bird calls in conjunction with other

methods such as radar monitoring shows potential in providing in-
formation about the number of birds involved in migration move-
ments. Acoustic monitoring can also provide information about rel-
ative species composition in such movements while other techniques
may not [14].

In this study we used recordings of six bird species, namely,
the Gray-cheeked Thrush (GCTH) - Catharus minimus, the Hermit
Thrush (HETH) - Catharus guttatus, the Scarlet Tanager (SCTA) -
Piranga olivacea, the Swainson’s Thrush (SWTH) - Catharus ustu-
latus, the Veery (VEER) - Catharus fuscescens and the Wood Thrush
(WOTH) - Hylocichla mustelina. These six species have calls of
similar duration and spectral content. We assume that calls from
this set of species can be separated from the audio events captured
at a recording station, and that the problem becomes one of deter-
mining which of the six species was the source of a particular audio
event. Using audio recordings of species mentioned above, we inves-
tigate the effect of choice of time-frequency representations (TFRs)
on classifier performance. We describe the PWVT-MFCC-HMM-
based and the PWVT correlation based classifier and compare their
performance to the Short Term Fourier Transform (STFT)-MFCC-
HMM-based [15], [16] and the STFT correlation based classifiers.

2. PREPROCESSING

The audio signals recorded as described in section 4 below were first
preprocessed in the following steps.

2.1. Band pass filtering

The bird species of interest vocalize in the frequency range between
2 kHz and 5 kHz. Therefore the recorded signal was band-pass fil-
tered with cutoff frequencies at 2 kHz and 5 kHz. This filter was
designed using the fir1 command in MATLAB c©, which imple-
ments the classical method of windowed linear-phase FIR digital fil-
ter design. The filter was designed using a Kaiser window and was
of order 112.

2.2. Signal Normalization

Due to variations in the recording environment, flight patterns, and
distance of the bird from the recording equipment, the calls were
recorded with varying signal strengths, and therefore were normal-
ized to prevent scaling errors.

2.3. Noise Suppression using Spectral Subtraction

Background noise acoustically added to the call can degrade identi-
fication. Because all of the acoustic bird call data were recorded in
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non-lab conditions, there was background noise needed to be sup-
pressed to increase the signal-to-noise ratio and improve detectabil-
ity. A method of noise suppression using spectral subtraction was
proposed by Steven Boll [17]. In our study a simplified implementa-
tion of Boll’s noise suppression method was applied to the bird call
data assuming the noise to be stationary.

2.4. Activity Detection and Clipping

Since the recordings were of varying durations, the signal was
clipped to eliminate sections of the recording with no bird call ac-
tivity and to standardize the duration of all calls. This was done by
using a moving average energy detector, which detects the presence
of a bird call when the energy is above a certain threshold. The
duration of the call is set to 5400 samples (0.245 sec sampled at
22050 Hz).

3. CLASSIFIERS

This section describes the Psuedo Wigner-Ville Transform (PWVT)
used in the two classifiers suggested in this paper: the MFCC-HMM-
based and the saturated correlation based classifiers for acoustic data
recognition.

3.1. Pseudo Wigner Ville Transform

The Wigner distribution was originally defined by Ville in 1948 [18]
using the analytic signal. Extending the definition to the Pseudo
(time localized window h) Wigner distribution [19], [20], [21] of a
real signal s(t), we have

W (t, ω) =
1

2π

∫ +∞

−∞
h(τ)z∗(t− 1

2
τ)z(t+

1

2
τ)e−jτωdτ (1)

where, z(t) is the analytic signal associated with the real signal s(t).
It is calculated in the time domain as:

z(t) = s(t) + jH[s(t)] (2)

where, H[·] stands for the Hilbert transform.

3.2. PWVT-MFCC-HMM-based method

The STFT-MFCC-HMM approach has been successfully applied to
the classification of Mexican antbirds [22], [7]. Here the steps for
the method that uses the PWVT as the TFR have been given.

3.2.1. PWVT Computation

We computed the PWVT of the pre-processed audio signal as given
by Equation 1, varying window sizes (WD) from 10 to 45 ms in
intervals of 5 ms. The step size (ST ) parameter is varied between 2
ms and the window sizes, since WD − 5 must be greater than ST .
Figure 1b shows the PWVT of the Gray-cheeked thrush call.

3.2.2. MFCC Computation

MFCCs for each of the time windowed PWVT segments were com-
puted. MFCC computation includes: Non-uniformly spaced (Mel-
scaled) Filterbank processing, Log Energy Computation, and Inverse
Discrete Fourier Transform (IDFT) as described by Davis in [22].
Since the log power spectrum is real and symmetric, the IDFT re-
duces to a DCT.

(a) STFT (b) PWVT

(c) Saturated STFT (d) Saturated PWVT

Fig. 1. Gray-cheeked thrush call.

The number of MFCCs (CP ) that are computed and used as fea-
ture vectors for every time segment (window) were varied between
discrete values of 7, 10, 13, 15, 17, 21, 25, 27, 31 and 35 and the
Number of Mel filter bins (BD) were varied between discrete val-
ues of 7, 10, 13, 15, 17, 21, 27, and 31.

3.2.3. Vector Quantization

Vector Quantization (VQ) is a process of mapping vectors of a large
vector space to a finite number of regions in that space. Each region
is called a cluster and is represented by its center (called a centroid).
A collection of all the centroids makes up a codebook. Although
the codebook is smaller than the original sample, it still accurately
represents bird call characteristics. The only difference is that there
will be some spectral distortion due to quantization effects.

The VQ method implemented in this study is theK-means clus-
tering algorithm described by Lloyd, S. P. in 1957 [23].

3.2.4. Hidden Markov Models

A HMM is a statistical tool that can model a discrete time dynamical
system described by a Markov process with unknown parameters
[24]. In our research, a bird call can be considered as a sequence of
observations produced by such a dynamical system.

An HMM for each class (each class refers to a bird species) is
used to model the temporal evolution of the vector of features (Code-
book vectors corresponding to MFCCs) extracted from a call signal
at discrete time step, and recognition is done by looking at which
HMM is most likely to produce a given sequence of observations.

An HMM is a quintuple model (ΩX , ΩO , A, B, Π), where ΩX
= [S1, . . . , SN ] is a finite set of N distinct states, while ΩO = [o1,
. . . ,oK ] is the set of possible observation symbols (codebook vec-
tors). λ = (A, B, Π) denotes the parameters of the hidden Markov
chain, with ANxN as the transition probabilities matrix, BNxK the
probabilities of observing each symbol for each state, and Π1xN the
distribution of the initial state (see illustration in Figure 2 for the
implemented model).
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Fig. 2. Hidden Markov Model.

The number of Codebook Vectors (CB) are varied between dis-
crete values of 10, 13, 15, 17, 21, 27, 31, 35, 40, 45, 50.

3.3. PWVT Correlation-based Method

A method of classification of nocturnal migratory bird calls using
saturated spectrogram correlation was introduced in [13]. Here we
describe the use of the Pseudo Wigner-Ville transform (PWVT) as
the TFR. The method applied to each bird call proceeds as follows:

3.3.1. PWVT Computation

After pre-processing the audio files, we compute Pseudo-Wigner
Ville transform with window sizes (WD) varying between 40 and
200 samples (1.8ms - 9ms) and step sizes (ST) varying between 20
and 150 samples (0.9ms - 6.65ms) as will be seen in the section de-
scribing the choice of parameters.

3.3.2. Scaling

The PWVTs are scaled so that the maximum value achieved equals
100. The PWVT values then lie in the interval [0, 100].

3.3.3. PWVT Saturation

The raw PWVT is saturated to binary values (+1: signal present, 0:
signal absent) using an iterative thresholding technique. The iterative
thresholding proceeds as follows.

1. Step 1: Select an arbitrary threshold value.

2. Step 2: Separate the PWVT in two groups: one group with
energy lower than the threshold and the other group with en-
ergy higher than the threshold.

3. Step 3: Calculate the means of the energies in the first group,
then in the second group. Average the means to produce a
new threshold. Return to Step 2 until the threshold stabilizes.

3.3.4. Correlation detection

The saturated PWVT is correlated with a template signal. The high-
est correlation value among the six species connotes a positive recog-
nition.

4. EXPERIMENTAL SETUP

The dataset on which the experiments have been performed consists
of audio recordings captured using a hypercardioid dynamic hand-
held microphone (Samson R31S, Samson Technologies, Hauppauge,
NY) mounted in a parabolic dish connected to a desktop PC running
Syrinx-PC software (John Burt, Seattle WA, http://www.syrinxpc.com).
The recording equipment was assembled and operated by Mr. Paul
Sweet in Zion, Illinois. The audio signals were sampled at 22.05
kHz with 16-bit resolution. Each has a duration of about 1 second.
The dataset consisted of a total of 21,652 recorded calls between the
six species.

The experiments were first conducted using 100 high quality
bird call samples (‘clean’ subset) from each bird species and then the
entire ‘noisier’ dataset. We used two different experimental setups
not only because TFR MFCC-HMM-based methods require training
(i.e. estimation of a model), but also because the TFR correlation
methods need only an appropriate choice of a template. The results
of both setups are comparable. These are described in the following
subsections.

4.1. TFR-MFCC-HMM-based Method

As mentioned above, the TFR-MFCC-HMM-based method requires
a large training dataset for the estimation of the HMM model for
each species. Since the number of calls available for testing and
training is limited, we use the k-fold cross-validation method to
train-test the data with a 100 calls from each species. In our study,
we partitioned the data into 10 complementary sets of 10 calls each,
where 90 calls are used for training and 10 for testing per round
of cross-validation and the cross-validation process was repeated 10
times and the results averaged.

In order to assess the performance of classifiers on the entire
dataset, we train (estimate a model) using 70 percent randomly se-
lected calls from the entire dataset and test using the remaining 30
percent.

4.2. TFR-Correlation-based Method

We tested the TFR-correlation by choosing a template call for each
bird species that gave us the highest detection rates (R). Each tem-
plate call was chosen from the set of 100 calls available from each
bird species. These templates were then used for the computation
of other classification measures. A similar approach was used when
experimenting with the entire dataset.

5. PERFORMANCE METRICS & NOTATIONS

5.1. Detection Rate (R)

The detection rate is a measure that is simply the fraction of calls
that are identified correctly. Let us define Tij as the number of files
of type j, identified by the classifier as type i. Then, R is defined by

R = 100

∑
i Tii∑
ij Tij

%, (3)
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where Tii is the number of bird calls of type i correctly detected as
bird i.

5.2. Root Mean Square Error in Count (Ec)

The Ec is a measure of the percentage root mean square error be-
tween the actual number of bird calls of a species i (Mi) and the
number of calls identified as species i (M̂i). This metric is helpful
from an application perspective as it indicates how well the classifier
does in accurately counting the number of bird calls of a particular
species in the vicinity of the recording station. It gives us a mea-
sure of the deviation of the number of identifications from the actual
number. The derivation and description of how Ec actually captures
this is provided in detail in [25].

R,Ec(equal) (where theMis are equal)andEc(prior) (where the
Mis are proportional to the actual probability of occurence) are the
three performance metrics used to evaluate the classifiers.

We define the following six metrics that will be used throughout
our analysis and discussion:

1. Rns - Detection Rate with noise suppression.

2. Ec(equalns) - Mean Square Error of count with equal proba-
bility of occurrence of each species with noise suppression.

3. Ec(priorns) - Mean Square Error of count with prior prob-
abilities of occurrence of each species with noise suppres-
sion. Prior probabilities are estimated as the fraction of each
species among the 21,652 available calls.

6. RESULTS

6.1. Classification results by bird species - ‘clean’ subset

6.1.1. Classifier as a detector

Table 1 below shows how detection rates (average of the ‘best’ five)
compared for each of the four classifiers as detectors of the six
species individually.

Table 1. Classification results based on Rns - ‘clean’ subset
Methods Detection Rates Rns

GCTH HETH SCTA SWTH VEER WOTH
STFT-MFCC-HMM 96% 87% 64% 68.6% 49.6% 55.6%
PWVT-MFCC-HMM 96% 85.6% 48.6% 57.6% 55.6% 60.8%

STFT Correlation 80.8% 95% 82.8% 84.6% 78% 7%
PWVT Correlation 93.2% 4.6% 42.2% 68% 62.2% 26.6%

6.1.2. Classifier as a counter with equal probability of occurrence

Table 2 below shows howEc(equal) (average of the ‘best’ five) com-
pared for each of the four classifiers as counters (with equal proba-
bility of occurrence of bird species) of the six species individually.

Table 2. Classification results based on Ec(equalns) - ‘clean’ subset
Methods Counting Error Ec(equalns)

GCTH HETH SCTA SWTH VEER WOTH
STFT-MFCC-HMM 1.74 5.01 5.17 8.54 5.16 7.84
PWVT-MFCC-HMM 2.04 12.45 6.66 5.07 5.42 5.18

STFT Correlation 8.75 16.97 13.68 15.69 24.43 93
PWVT Correlation 6.21 95 57 29.60 28.96 53.2

6.1.3. Classifier as a counter with prior probability of occurrence

Table 3 below shows how Ec(prior) (average of the ‘best’ five) com-
pared for each of the four classifiers as counters (with equal proba-
bility of occurrence of bird species) of the six species individually.

Table 3. Classification results based on Ec(priorns) - ‘clean’ subset
Methods Counting Error Ec(priorns)

GCTH HETH SCTA SWTH VEER WOTH
STFT-MFCC-HMM 7.9 125.52 152.06 29.10 106.8 330.2
PWVT-MFCC-HMM 3.5 183.37 201.7 40.32 84.6 343.0

STFT Correlation 12.53 145.65 210.5 14 224.0 93
PWVT Correlation 29.01 92.67 944.74 28.32 240.84 79.59

6.2. Classification results by bird species - entire dataset

Table 4 below shows how detection rates compared for each of
the four classifiers as detectors of the six species individually
(trained/tested on entire dataset).

Table 4. Classification results based on Rns - ‘noisier’ dataset
Methods Detection Rates Rns

GCTH HETH SCTA SWTH VEER WOTH
STFT-MFCC-HMM 79.61% 60% 45.80% 37.60% 18.57% 36.36%
PWVT-MFCC-HMM 80.58% 54.37% 36.77% 35.63% 10.52% 32.95%

STFT Correlation 62.22% 61.84% 52.61% 48.37% 49.39% 2.04%
PWVT Correlation 86.47% 2.819% 22.82% 43.91% 41.13% 14.67%

7. RELATION TO PRIOR WORK AND DISCUSSION

As seen in Table 1, the PWVT-MFCC-HMM-based classifier iden-
tified the Gray-cheeked thrush correctly on average 96% of the
time and was comparable to the existing STFT-MFCC-HMM based
method described in the classification of Mexican antbirds. [22], [7].
A reasonable margin of error for classifiers as counters (with equal
probability of occurrence of bird species) of individual bird species
is 2%. We see that Gray-cheeked thrush GCTH was counted
correctly by the PWVT-MFCC-HMM-based classifiers within the
Ec(equal) = 2% margin and was comparable to the existing STFT-
MFCC-HMM-based classifier. GCTH was identified/counted more
accurately than the other species because of its unique spectral
‘hook’ at the beginning of the call. Another reason for the success
of the GCTH in this study is the consistency of the spectral features
within the species. A good counter that accounts for prior knowl-
edge of the number of birds of each species must not have an error
greater than 5%. The GCTH again was counted correctly by the
PWVT-MFCC-HMM classifier with an error < 4%.

As a detector, the PWVT correlation classifer and the PWVT-
MFCC-HMM classifier detected the GCTH correctly 86% and 80%
of the time in comparison to the STFT correlation [13] and the STFT-
MFCC-HMM methods that detected the Gray-cheeked thrush cor-
rectly only 62% and 79% of the time. The PWVT due to its inherent
property of concentrating energies about the instantaneous frequency
aids classification in a correlation type of classifier applied to ‘nois-
ier’ data.

We also observe a marginal improvement in the performance of
classifiers when the noise suppression as described by Steven Boll
[17] was applied to the raw audio file.

The Pseudo Wigner-Ville improves classifier performance when
applied to ‘noisier’ low quality recordings, but doesn’t make much
of a difference when applied to ’clean’ high quality recordings. The
performance of PWVT-based classifiers is within acceptable levels
for Gray-cheeked thrush calls, but needs improvement for others.
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