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ABSTRACT

This paper presents a generic approach for automatic singing
assessment for basic singing levels. The system provides the
user with a set of intonation, rhythm and overall ratings ob-
tained by measuring the similarity of the sung melody and a
target performance. Two different similarity approaches are
discussed: fj curve alignment through Dynamic Time Warp-
ing (DTW), and singing transcription plus note-level similar-
ity. From these two approaches, we extract different into-
nation and rhythm similarity measures which are combined
through quadratic polynomial regression analysis in order to
fit the judgement of 4 trained musicians on 27 performances.
The results show that the proposed system is suitable for au-
tomatic singing voice rating and that DTW based measures
are specially simple and effective for intonation and rhythm
assessment.

Index Terms— singing assessment, automatic transcrip-
tion, score alignment, melodic similarity, singing voice

1. INTRODUCTION

The assessment of a given musical performance is commonly
affected by many subjective factors, even in the case of expert
musicians [1]. Therefore, the development of an automatic
performance evaluation system is a challenging problem. Un-
der controlled conditions, some objective aspects can be con-
sidered and computationally modelled. Some studies have
analyzed the reliability of judgements in music performance
evaluation [1, 2, 3]. In such studies, different musicians were
asked to rate a certain number of performers according to dif-
ferent aspects, with the aim of studying how objective the dif-
ferent judgements were. Some aspects such as intonation ac-
curacy, vibrato or rhythm seem to be quite reliably judged by
musicians, unlike more subjective aspects such as diction.
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Prior work has lead to various solutions for automatic
singing rating [4, 5, 6, 7, 8, 9, 10]. In general, all these sys-
tems focus on intonation assessment with visually attractive
real-time feedback. Songs2See [10] is a recent and represen-
tative example of the state of the art. Nevertheless, current
approaches do not generally handle rhythmic misalignments,
and the feedback provided is not directly based on trained
musicians’ judgements. This study deals with automatic in-
tonation and rhythm assessment of singing performances, be-
ing our main goal to provide the user with meaningful feed-
back based on modeling teachers’ criteria. We focus on basic
singing levels, i.e. children and beginners. Two different ap-
proaches for singing assessment are evaluated: dynamic time
warping (DTW) and note-level similarity with respect to a tar-
get melody.

This paper is organized as follows: Section 2 provides an
overall description of the selected approach. The evaluation
methodology is presented in Section 3, including ground truth
gathering (Section 3.1) and evaluation measures (Section 3.2).
Section 4 presents our main results and Section 5 draws some
conclusions about this study.

2. SELECTED APPROACH

We propose a generic schema for singing assessment based on
melodic similarity with respect to a target melody. The over-
all block diagram is illustrated in Figure 1. The audio input is
first analyzed to extract a set of low-level descriptors (Section
2.1). They are then used to measure melodic similarity with
respect to a target melody, whose definition is discussed in
Section 2.2. Two different similarity measures are computed
simultaneously: fundamental frequency (fj) alignment (Sec-
tion 2.3), and automatic singing transcription (Section 2.4)
combined with note-level similarity (Section 2.5). The final
step of the singing assessment system is the Performance rat-
ing stage (Section 2.6), which assigns an overall rating to the
user performance.

2.1. Low-level feature extraction

We use the well-known Yin algorithm [11] to compute two
related features: fy and aperiodicity (or voicing). These de-
scriptors, combined with the instantaneous power of the audio
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Fig. 1. Overall block diagram

signal, are given to other system blocks for singing assess-
ment.

2.2. Target melody

The target melody is the performance that should be imitated
by the student to achieve a good score. In our approach, the
target melody is sung by is a target singer, i.e. a trained
singer who is asked to sing with a rather pure voice, with-
out vibrato, trying to be a good reference for beginners and
children. Some post-processing is then applied to correct mi-
nor pitch and rhythm mistakes. Although we initially consid-
ered the symbolic score as a target melody, the fact of hav-
ing a target singing voice allows a better alignment between
fO sequences and the measurement of detailed expressive re-
sources.

2.3. Fundamental frequency alignment

Dynamic Time Warping (DTW) [12, 13, 14] is employed in
order to find an optimal match between two given sequences
under certain restrictions. However, it must be noted that the
definition of optimal match strongly affects the robustness of
the alignment. We have substituted the fy value of unvoiced
regions by a constant value finpvoiceda = 0 Hz (see more de-
tails on voiced/unvoiced frame classification in Section 2.4).
By removing the unvoiced sections, spurious fy values are
avoided and only actual sung regions are compared. There-
fore, the cost matrix M of the DTW can be defined as follow:

M;; = min{(for(i) — fou(§))*, o} (1)

where for (1) is the fy value of the target melody in the frame
i, forr(j) represents the fj value of the user’s performance in
the frame j, M;; is the cost value and « is a constant. When
the squared fj difference becomes larger than «, it is assumed
that an spurious case has been found and its contribution to the
cost matrix is limited.

The DTW algorithm takes as input the cost matrix, and
it provides an optimal path [ig, ji] for & € 1...K, where
K is the length of the path. We limit the slope of the path
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to the range [10°,80°] (deviations between transcription and
reference are considered to be moderate).

2.3.1. DTW as an intonation similarity measure

The cost matrix provides information about the instantaneous
deviation of the sung note with respect to the reference, as
well as information about the total f, deviation of the sung
melody. We consider the total cost of the optimal path to be a
similarity measure for intonation assessment. The total into-
nation error (11 E) is computed as follow:

K

TIE = M, (2)
k=1

where M is the cost matrix, [ig,jx] for k € 1...K is the
optimal path, and K is the length of the path.

2.3.2. DTW as a rhythmic similarity measure

In this paper, we propose DTW as a powerful procedure for
automatic rhythm assessment. The idea is to analyze the
shape of the optimal path, since it is a rich source of infor-
mation about the rhythmic performance. In the cost matrix
of the DTW, a 45° straight line represents a perfect thythmic
performance (no deviation with respect to the target melody).
A poor rhythmic performance would yield deviations with
respect to such straight line. The precise deviation location
can be extracted from this curve, as well as the total amount
of rhythmic error. On the other hand, a straight line with an
angle o # 45° represents a good rhythmic performance in a
different tempo. The straightness can be quantified through a
linear regression analysis: Lety = 5y + $1x + € be the linear
model that best fits the optimal path within the cost matrix,
with e the error of fit. The error measure proposed is the

/ K .
root mean square (RMS): erms = %Zk:l €12 in seconds.

In Figure 2, two different situations are illustrated: a bad
rhythmic performance that leads to a high linear regression
error (erms = 0.36s, solid line), and the result of a perfect
rhythmic performance played in a different tempo (dotted
line). In the latter case, the linear regression error is very low
(erms = 0.047s). Note that eryg is a tempo-independent
measure.

2.4. Singing transcription

We consider a fj-based note segmentation approach with a
hysteresis cycle for singing transcription [15, 16], and per-
formed in the following steps: (1) locate the segments where
the user is singing, (2) split the voiced segments into different
notes and (3) label each note in terms of pitch.

We classify voiced and unvoiced frames by detecting stable
frequency regions. If the fy curve is stable during a certain
time (100ms in the implemented system), we create a new
voiced segment. When there is a gap in the f; curve, such
segment ends. Gaps of one exact octave are not considered,
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Fig. 2. Cost matrix of the DTW, together with the path for an
ideal performance (dashed line) and two different user per-
formances. Rhythmically unstable: egpms = 0.36s (solid line)
and rhythmically stable (different tempo): erms = 0.047s
(dotted line).

since they are usually due to octave jumps during the same
note. This process is carried out for the whole signal. In ad-
dition, voiced segments with a mean power below a threshold
pwr» O mean aperiodicity above a threshold ¢, are directly
tagged as unvoiced. This later classification avoids harmonic
noises to be estimated as false voiced regions.

Once voiced segments are located, we segment voiced
portions through fy-based note segmentation. We use an hys-
teresis cycle in time and frequency in order to ignore minor
deviations with respect to a pitch center. We dynamically es-
timate such pitch center by averaging f; values within a note.
The estimated pitch average then becomes more precise as
the note length increases. When the instantaneous f; of a
note greatly deviates respect to its pitch average, a note split
happens and the process starts again.

Once the sung notes are estimated, we assign a single
pitch to each note. According to [17], the best pitch estima-
tion for a note is a weighted mean of the most representative
range of fj values. This type of mean is called alpha-trimmed
mean [18], and it removes the extreme f; values (usually cor-
responding to the boundaries) before computing the mean.
We have chosen this approach in this paper.

2.5. Note-level similarity measures

Note-level similarity measures are used to compare the sym-
bolic representations of the sung melody and the target one.
fo alignment, combined with melodic transcription, provides
a note-to-note comparison even when rhythmic misalignment
is present. The considered measures consist on the average
(Z) and the rhythmically weighted average (Zyy) of three
different magnitudes: onset time deviation (AQO), note fre-
quency deviation (A f) and interval deviation (AI). While
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the average does not take into account note durations, the
rhythmically weighted average does:

Az — Z?:l | Az

n

i li - |Az;
Axw_zzzl |x|

Z?:l li
where Az; is the deviation between the user transcription and
target melody of the magnitude x (onset time, note frequency,
or interval) for the note i, Ax is the average deviation of the
generic magnitude x, Azyy is the rhythmically weighted av-
erage deviation, /; is the length of the note 7, and n is the total
number of notes. We now present the considered magnitudes.

3)

2.5.1. Onset time

Let O; be the onset time of the note  of the target melody, and
O, the onset time of the related note of the user performance.
Then, the onset deviation is defined as AO; = O; — O;.

2.5.2. Note frequency

We define f; as the frequency of the note i of the target
melody, and fi as the frequency of the same note of the user
performance. The note frequency deviation is then defined as
Afi=fi — f; (where f; is measured in cents in all cases) .

2.5.3. Interval

The interval is defined as the difference between the fre-
quency of two consecutive notes I; = f;11 — f; in the target
melody. The same interval in the user performance is de-
fined as fi = fi+1 - fi. The interval deviation is defined
as ID; = I; — IAZ This measure is key independent, so it is
appropriated for a-cappella singing with no tuning reference.

2.6. Performance rating

In the performance rating stage, we combine the 8 similarity
measures (2 DTW based and 6 at note-level) in order to pro-
vide three different ratings: rhythm rating, intonation rating,
and overall rating. The optimal combination of the similarity
measures has been considered to be the one that best fits the
judgement of 4 trained musicians about 27 different singing
performances. We have obtained such optimal combination
through a quadratic polynomial regression analysis performed
in Weka [19].

3. EVALUATION

3.1. Ground truth

We combine the use of real recordings and artificially gener-
ated melodies in order to systematically control the level of in-
tonation and rhythm deviations. The evaluation dataset is then
built by introducing random pitch/rhythm variations to three
different target melodies, using an harmonic plus stochastic
modelling of the input signal [20]. Three levels of random



variations have been applied for both pitch and rhythm. In to-
tal, nine combinations with different degree of error are gen-
erated from each reference melody. Therefore, 27 melodies
(around 22 minutes of audio) comprise the whole evaluation
dataset!.

Human judgements were collected from four trained mu-
sicians, who were asked to score from 1 to 10 the evalua-
tion dataset in three different aspects: intonation, rthythm and
overall impression. Melodies were presented in random order
using headphones.

3.2. Evaluation measures

Three different measures have been computed to evaluate the
singing voice assessment system: interjudgement reliability,
correlation between similarity measures and human judge-
ments and polynomial regression error. Interjudgement re-
liability, proposed in [1], measures the correlation between
human ratings. This measure aims to quantify the objectivity
of the ratings. We have computed the correlation between the
ratings for each pair of musicians (in total n(n — 1)/2 = 6
pairs), and then averaged all the correlations. We have also
computed the correlation coefficient for each similarity mea-
sure with respect to the different mean score given by musi-
cians. This is a good reference about how meaningful each
similarity measure is for performance assessment. A total of
27 (9 similarity measures x 3 ratings) correlation coefficients
have been computed. Finally, the human criteria has been
modelled in Weka through quadratic polynomial regression.
The regression error quantifies the accuracy of the data fit-
ting procedure. In this case, the evaluation dataset is the same
as the training dataset. We consider the following measures
from regression analysis: the correlation coefficient and the
root mean squared error.

4. RESULTS & DISCUSSION

The mean correlation values corresponding to the interjudge-
ment reliability measure are shown in Table 1. The results
show that the agreement on rhythmic evaluation is lower.
Nevertheless, the correlation in all cases is acceptable, and
the case of intonation is specially good.

Type of score  Mean correlation coefficient

Intonation 0.93
Rhythm 0.82
Overall 0.90

Table 1. Results of interjudgement reliability

Table 2 shows the correlation between the different sim-
ilarity measures and the human ratings. We observe a high
correlation of human ratings and DTW based measures (I'TE

'Audio samples extracted from the ground truth can be found at
http://www.atic.uma.es/singing
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Similarity Corr. with Corr. with Corr. with
measure Intonation rating Rhythm rating Overall rating
TIE 0.92 0.21 0.81
ERMS 0.0012 0.81 0.52
AO 0.026 0.68 0.48
AOw 0.037 0.68 0.48
Af 0.96 0.2 0.82
Afw 0.89 0.23 0.82
AT 0.94 0.34 0.9
ATw 0.87 0.35 0.87

Table 2. Correlation values of each similarity measure with
the ratings given by trained musicians.

Type of error \ Intonation Rhythm Overall
Correlation coefficient 0.988 0.969 0.976
Root mean squared error 0.4167 0.58 0.44
Table 3. Polynomial regression error.
and erms), specially for rhythm assessment. DTW based

measures do not require singing transcription, since it di-
rectly uses the low-level feature. Therefore, DTW is a simple
but efficient technique for intonation and rhythm automatic
assessment.

Finally, Table 3 shows the obtained regression errors. The
optimal polynomial combination of similarity measures pro-
vides high correlation with human judgements. For intona-
tion, the results are specially good, because the chosen sim-
ilarity measures are very representative and there is a high
interjudgement reliability.

5. CONCLUSIONS

This paper presents a generic schema for automatic singing
assessment, applied to the context of basic singing levels.
The system provides the user with several ratings (intonation,
rhythm and overall) by combining a set of melodic similarity
measures with respect to a target melody. Target melodies are
sung by a trained singer with neutral expression. The combi-
nation of fj alignment and symbolic similarity measures has
been proven to be very appropriated for automatic rating. Fur-
thermore, DTW based similarity measure is specially simple
and effective for intonation and rhythm assessment, and such
approach has not been considered in prior work. We have
combined similarity measures through polynomial regression
in order to fit the judgement of trained musicians. This ap-
proach then succeeds in modelling the musicians’ criteria, as
shown by our results. This study also contributes with a sys-
tematic evaluation methodology, applicable to other types of
systems for automatic singing rating. Our approach is easily
extensible to other expressive features such as vibrato or dy-
namics if new similarity measures are incorporated. In addi-
tion, the symbolic score of the melody could be used as target
melody to avoid the need of a target singer. Finally, the pro-
posed schema could be applied to realtime assessment if an
on-line time warping algorithm [21] is integrated.
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