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ABSTRACT 
 
Singing voice plays an important role in the listening experi-
ence of music. In this paper, we propose to classify popular 
music by the timbre quality of the singing voice. Speci-
fically, we adopt six singing voice timbre classes as the 
taxonomy and build a new data set, KKTIC, that contains 
the expert annotations of 387 Chinese popular songs. To 
build an automatic classifier, we resort to signal processing 
and machine learning techniques and extract a number of 
singing voice-related features such as vibrato and harmonic-
to-noise ratio. We also propose the use of vocal segment 
detection and singing voice separation as preprocessing 
steps. Our evaluation identifies the relevant acoustic features 
and validates the importance of these preprocessing steps. 
The accuracy in timbre classification reaches 79.84% in a 
five-fold stratified cross validation. 
 
Index Terms— Singing voice timbre, music information 
retrieval, vocal segment detection, singing voice separation. 
 

1. INTRODUCTION 
 
In order to organize and retrieve the growing collections of 
digital music, we need automatic systems that index each 
song with useful information such as genre. In response to 
this demand, the last decade has witnessed substantial 
progress towards the classification of music by genre, style, 
instrument, and emotion [1, 2]. However, singing voice has 
not yet been fully utilized as a music retrieval method, even 
though it is an important characteristic of music. Being one 
of the most versatile musical instruments, singing voice not 
only adds verbal components to the performance, but also 
allows a singer to express emotion. For example, a music 
piece with screaming and roaring voices usually expresses 
anger, whereas a song with sweet voices tends to evoke 
positive emotions.  

In light of this, we propose a new scheme for music 
classification in this paper based on singing voice timbre. A 
data set is built specifically for this classification task. 
Moreover, we investigate several techniques to classify 
music by singing voice timber, including the extraction of 
singing voice-related acoustic features, the use of vocal 
segment detection to filter out irrelevant (non-vocal) tem-
poral segments in a piece of music, and the enhancement 
(suppression) of the vocal part (instrument part) in the music 
piece by singing voice separation. Our study analyzes the 

contribution of different system components and identifies 
the setting that leads to the highest accuracy. 

In summary, the major contributions of the paper include: 
 We propose a new scheme to classify music and build 

a data set that is made publicly available for research 
purpose (http://mpac.ee.ntu.edu.tw/dataset/KKTIC). 

 We demonstrate that singing voice detection and sing-
ing voice separation are helpful front-end operations 
for singing voice timbre classification. 

 We compare different audio feature sets and find that 
voice-related features perform the best for this task. 

 
2. RELATED WORKS 

 
Research on singing voice has advanced significantly in the 
last few decades [3]. For instance, Berenzweig et al. [4] 
proposed a machine learning approach to locate singing 
voice segments. Regnier et al. [5] used vibrato and tremolo 
parameters to detect singing frames. Kim et al. [6] proposed 
the use of vocal segment detection and voice coding features 
to identify the singer in a song. This singer identification 
task has also been addressed by using  vocal separation and 
MFCC [7] and by combining accompaniment sound reduc-
tion with reliable frame selection [8]. A great amount of 
efforts have also been made to separate singing voice from 
the accompanying instruments [9], as the two channels are 
mixed in most popular songs sold in the market. 

Fujihara et al. [10] developed a retrieval system that 
searches for songs having vocal timbres similar to the query 
song. The system first suppresses the energy of the accom-
paniment (instrumental) sound, and then extracts speech 
features such as LPC-derived Mel-cepstral coefficient and 
delta F0 for song representation. This system differs from 
our system in that it retrieves songs based on similarity 
measurement, whereas ours is a learning-based system that 
captures the high-level semantics of voice timbre. 

Turnbull et al. [11] built the CAL500 data set that is 
annotated by students. The data set is made of 502 songs 
with a tag lexicon of 135 musical semantic concepts, in 
which 22 are voice timbre-related. Though many studies 
have used this data set, none of them focuses on vocal 
timbre classification. In addition, our pilot study shows that 
the annotation of voice timbre is very sparse in this data set. 
Moreover, the annotations are noisy as they are entered by 
paid subjects. In contrast, the data set we develop is 
annotated by music experts and is specifically designed for 
singing voice timbre classification. 
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Table 1. The singing voice timbre classes and the number of 
songs classified in each category by experts. 

 
3. DATA SET 

 
As there is no standard taxonomy of singing voice timbre, 
we consult three professional and experienced music editors 
of KKBOX (http://tw.kkbox.com), a leading cloud-based 
music service provider in East Asia, to determine a proper 
taxonomy. We opt for a small number of categories which 
are representative enough of the universe of singing voice 
timbre and also easy to understand. The editors must agree 
upon the definition of the singing voice timbre classes, such 
that they can provide exemplar songs for each class in a 
consistent manner. Moreover, to reduce cultural bias, we 
focus on only Chinese pop songs released in Taiwan and 
Hong Kong. This selection process results in six classes, 
which are shown in Table 1 along with verbal descriptions 
provided by the editors. Each class is associated with 54 to 
81 exemplar songs, giving rise to 399 exemplars in total. 
The six classes are by nature not mutually exclusive, so 11 
songs are found to be adequate for two classes. We refer to 
this data set as KKBOX TImbre Chinese, or KKTIC. 

As a singer may perform songs with different styles and 
singing timbres, the annotation is made per song instead of 
per artist. To avoid possible bias, we select at most five 
songs from a singer. In the end, the 387 unique songs are 
from 91 singers (28 male, 56 female, and 7 group singers). 
 

4. SYSTEM 
 
The flow chart of the proposed system is shown in Fig. 1. 
Given an input song, we first identify the segments with 
singing voice using a pre-trained vocal/non-vocal classifier, 
and then separate the voice signal from the accompaniment 
using a singing voice separation algorithm. Finally, singing 
voice-related features are extracted. 
 
4.1. Vocal segment detection (VD) 
 
Some temporal segments of a song are purely instrumental 

 (e.g., intro, bridge, and outro) and are therefore less 
relevant to singing voice timbre. Instead of dealing with the 
whole song, it makes sense to neglect these non-vocal 
segments via a VD algorithm. To this end, a vocal/non-
vocal classifier is built by using an in-house collection of 
1,019 Karaoke songs. Each song has two channels: one is 
accompaniment-only �, and the other is a hybrid of vocal 
signal � and the accom-paniment �′. We use this data set 
because it is easy to differentiate the vocal segments from 
the non-vocal ones from Karaoke songs and use these 
segments as training data for the vocal/non-vocal classifier. 
    Specifically, we identify the vocal segments in these 
Karaoke songs by exploiting the fact that �  and �′  are 
usually similar. We adopt the least-mean-square algorithm 
proposed in [12] to isolate the voice channel �′ from the 
hybrid � + �′ . Moreover, since the frequency range of 
human singing voice is seldom lower than 80 Hz [13], the 
frequency components lower than 100 Hz is removed from �. 
We consider the segments in � whose energy is smaller than 
the mean value plus 1/5 standard deviation of the energy 
values of all frames in that song as vocal segments. We then 
re-combine the two channels and use the vocal/non-vocal 
information estimated from the above procedure as ground 
truth label and then train a support vector machine (SVM) 
binary classifier. 

For smoothness and efficiency, we consider 3-second as 
the basic unit for VD. We randomly pick 1/2 of the 30,363 
3-second segments from the monauralized Karaoke data set 
and extract MFCC for feature representation [14]. Cross-
validation on the remaining 1/10 segments obtains accuracy 
of 73.62%, which is close to the state-of-the-art [14]. 
 
4.2. Singing voice separation (SP) 
 

Unlike Karaoke music, the singing voice and accompany-
ment are mixed in both channels for consumer available 
music. Therefore, although VD helps identify segments with 

Timbre Description #Song 

Deep 
Low-pitched voice that is usually 
sexy, confident, and friendly 

74 

Gravelly 
Voice that is hoarse, husky, croaky, 
mature and mellow 

57 

Powerful Full and powerful sound 70 

Sweet 
Medium-pitched voice that is bright 
and pleasant, silvery and clear 

54 

Ethereal 
Voice that is clear, healing and 
distinctively delicate 

63 

High-
pitched 

High-pitched voice that is sonorous, 
passionate, and penetrating 

81 
Fig. 1. System flowchart. 
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singing voice, the identified segments (e.g., for KKTIC) still 
contain instrumental sounds.  

Because we are concerned about singing voice timbre, we 
investigate whether we can obtain better result by enhancing 
(suppressing) the vocal (instrument) part in the music piece 
by singing voice separation algorithms. To this end, the 
robust principle component analysis (RPCA) is adopted, for 
its excellent performance shown in recent work [9]. Given 
an input song, we first compute its N-point short-time 
Fourier Transform (STFT) to obtain the spectrogram 
� = ����, where � ∈ ℝ�×� is the magnitude and � ∈ ℝ�×� 
is the phase. We then apply RPCA to decompose M into a 
low-rank matrix L and a sparse matrix S by solving the 
following optimization problem, 

                         min�����‖�‖∗ + �‖�‖�,                       (1) 

where ‖	∙	‖∗ and ‖	∙	‖� denote the nuclear norm (sum of the 
matrix singular values) and the l1 norm (sum of absolute 
values of the matrix entries), respectively. The parameter λ 

is set to �� = 1/�max	(f, t) as recommended in [15] for a 
balance between the two terms. It has been found that after 
this decomposition, L and S, respectively, corresponds well 
to the background accompaniment and the singing voice, 
possibly because of the repetitive nature of the instruments 
and the sparseness of singing voice in the time-frequency 
domain [9]. Therefore, we can recover the time domain 
signal of the singing voice via the inverse-STFT of ���� . 
Due to space constraint, we refer the reader to [9] and the 
reference therein for the details of solving Eq. (1). 
 
4.3. Feature extraction 
 
To better catch the singing voice traits, we represent the 
audio content with features that are designed specifically for 
voice signals [16, 17]. Specifically, we use the Opensmile 
toolkit [18] to extract audio features such as jitter and 
shimmer (both are related to vibrato) from the 30th second to 
the 60th second segment of each song and pool the extracted 
frame-level feature vectors into a song-level vector by tak-
ing the first four moments.  For comparison, we also use the 
MIRToolbox [19] to extract music-specific features such as 
tempo and chromagram. See Table 2 for dimensions and  

Table 2. The feature sets. The number in the parenthesis 
after each feature set denotes the dimension. 

General audio features (166D) 
Dynamics 
(18D) 

RMS energy (root-mean-square energy), 
loudness, ZCR (zero-crossing rate) 

Spectral (148D) Spectral centroid, roll-off, slope, flux, 
variance, skewness, kurtosis, MFCC 

Singing voice features (428D) 
Pitch (50D) F0 (fundamental frequency), jitter 

(deviations in pitch period), shimmer 
(deviations in pitch amplitude) [20] 

Voice quality 
(VQ) (378D) 

HNR (harmonic-to-noise ratio), LSP 
(line spectral pairs; speech coding used to 
represent linear prediction coefficients), 
voicing probability, and log Mel-
frequency band 

Music features (27D)  
Rhythm (5D) Fluctuation, tempo, pulse clarity 
Tonal (22D) Chromagram, mode, and harmonic 

change detection function (HCDF) [21] 
 
 
brief descriptions of the extracted features. 
 
4.4. Voice timbre classification 
 
We formulate this singing voice classification problem as a 
multi-label classification task, as each song can belong to 
more than one class. Specifically, for each of the six classes, 
we train a binary classifier predicting if a given song 
belongs to that class. We use SVM with radial basis func-
tion kernel as our classifier. In addition, because all of the 
classes have more negative examples than positive examples, 
we adopt the under-sampling method EasyEnsemble [22] to 
mitigate the class-imbalance problem. 
 

5. EXPERIMENTS 
 
The performance is evaluated on the KKTIC data set. For 
fair comparison, each song is converted to 22050 Hz, 16-bit 
PCM WAV, and mono-channel before any processing. We 
report the average result of 5-fold cross validation.  

Fig. 2. Classification accuracy of the system using different preprocessing steps. 

736



 
5.1. Singing voice detection and extraction 
 

Fig. 2 shows the performance of the system using 
different preprocessing strategies for feature extraction. We 
use spectral and singing voice features described in Table 2 
in this experiment. The following strategies are compared: 

 Raw: use the raw input music directly 

 SP: separated singing voice 

 VD: segments of singing voice 

 SP→VD: voice separation followed by vocal detection 

 VD→SP: vocal detection followed by voice separation. 

The following observations can be made from Fig. 2. 
First, voice separation (SP) contributes only minor 
improvement to the average accuracy. This may due to the 
interference introduced by the imperfect separation 
algorithm, especially for songs that have prominent singing 
voice and weak accompaniment. For example, for voice-
prominent songs such as High-pitched songs, the removal of 
non-vocal segments is enough. On the other hand, features 
extracted from the remaining non-vocal segments bring 
negative effects. Second, the use of vocal detection (VD) 
greatly improves the average accuracy by about 5%. VD 
only does not work for Sweet songs. Third, the best result 
(79.84%) is attained by using vocal detection followed by 
voice separation (VD→SP). The performance difference 

between VD→SP and Raw is significant (p-value<0.001) 
under the t-test. Finally, the accuracy degrades if we 
separate voice first and then detect the vocal segments 
(SP→VD), although we have expected that its result would 
be similar to VD→SP. This degradation is largely due to the 
errors in SP. 

The parameter λ for SP can be adjust to accommodate the 
properties of the task in hand. The higher the value of λ, the 
sparser (but sometimes more distorted) the separated singing 
voice is. In the extreme case when λ = 0, RPCA acts like an 
identity function, i.e., it just outputs the input song. On the 
contrary, if the value of λ is too high, the separation 
algorithm introduces serious interference and hence leads to 
negative impact. The best result is obtained with � = 1.5��.  

We note that these preprocessing steps and the parameters 
thereof can be used in a class-dependent manner, since for 
some singing timbre classes (e.g. Gravelly and Ethereal) the 
classification accuracy enhances little when additional SP is 
taken after VD. 
 
5.2. Singing voice features 
 

Next, we study the performance of different combinations of 
the feature sets using the VD→SP strategy. As shown in Fig. 
3, using the general audio feature set (Dyn+Spec) already 
performs well, possibly because the inclusion of MFCC in  

Fig. 3. Accuracy in singing timbre classification for differ-
ent combinations of the feature sets.  

 
the feature set Spec, which has been proved powerful as an 
audio signal representation. 

Using only music feature set (Rhy+Ton) does not 
degrade the result much, partly because tonal features still 
represent the frequency content of the audio and partly 
because music and singing voice are usually correlated. For 
instance, love song singers often use a tender tone to express 
emotion, while we can expect to hear gravelly voices in 
heavy metal songs. The pitch feature set only captures the 
trend and variations of the fundamental frequency, so using 
pitch alone does not work well. Finally, we see that the 
voice feature set (Pitch+VQ) outperforms other feature sets, 
which is in line with our intuition that voice-related features 
should match the task well. 

The dimension of the voice feature set might be too high 
(i.e., 428D). In view of this, we further use correlation-based 
feature subset selection (CFS) [23] and reduce the feature 
dimension to 58D. CFS evaluates the importance of a 
feature subset by awarding the individual feature predictive 
ability and penalizing the inter-correlation within the feature 
subset. Forward best-first selection strategy is used. The 
combination of Spec and the resultant feature set (VoiceCFS) 
leads to the best result in our evaluation. 
 

6. CONCLUSION 
 
In this paper, we have defined the problem of singing voice 
timbre classification and constructed a new data set for the 
task. We have empirically validated that the use of using 
vocal segment detection and singing voice separation 
improves the classification accuracy. In addition, voice 
features are remarkably effective. Future work will be 
directed towards using the vocal timbre classification results 
as an additional feature set for other tasks such as music 
emotion recognition and music recommendation. 
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