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ABSTRACT

An adaptive perceptual equalizer for headphones is introduced. It
estimates the effect of auditory masking while considering the char-
acteristics of the headphones, ambient noise, and music. The sys-
tem utilizes a psychoacoustic masking model to estimate the level to
which the music should be raised to have the same perceived tonal
balance in noise as it has in a quiet environment. Prototype testing
showed that the most important task is to make the music audible
in each Bark band. The compensation of the partial masking further
improves the perceived sound quality. The system uses a micro-
phone of a headset to capture the ambient noise. The equalization
is implemented using a high-order graphical equalizer that does not
require subband decomposition of the music signal. The proposed
equalizer also retains reasonable SPL levels: in an example case, the
maximum gain in one Bark band was 11 dB while the overall SPL
increase was only 2.5 dB.

Index Terms—Acoustic noise, acoustic signal processing, audio
systems, music, psychoacoustics

1. INTRODUCTION

Listening to music through headphones takes place mostly in noisy
environments due to the vast success of portable music players and
smartphones. Gartner, Inc. reported that worldwide sales of mobile
phones reached almost 428 million units in the third quarter of 2012.
The share of smartphone sales was 40 percent of total mobile phone
sales, increasing 47 percent from the third quarter of 2011 [1].

Loud background noise is known to mask parts of the music sig-
nal and thus changes the perceived timbre of the music [2, 3]. By
definition, auditory masking occurs when a sound affects the per-
ceived loudness of another sound. The masking threshold represents
the level under which a desired signal becomes inaudible, whereas
partial masking only reduces the loudness of the desired signal [4].

The authors have previously presented a perceptual frequency
response simulator which utilized elementary auditory masking
models previously used in audio coding applications as well as the
measured isolation capabilities of different headphones to estimate
the auditory masking phenomenon when using headphones in a
noisy environment [5]. The aim of this article is to utilize a low-
complexity auditory masking model, although there are more recent
masking models presented, e.g., by van de Par et al. [6] and Jepsen
et al. [7], in order to design a real-time adaptive psychoacoustic
equalizer for headphones, which takes the characteristics of the
background noise and music into account. Ideally, the proposed

equalizer compensates the masking effect (both complete and partial
masking) caused by the background noise.

This paper is organized as follows. Section 2 describes the
masking estimation algorithm for the ambient noise. Section 3
presents the proposed perceptual equalizer. Section 4 focuses on the
results and Section 5 concludes the paper. Furthermore, Section 6
discusses the relation to prior research.

2. MASKING ESTIMATION

Figure 1 shows the block diagram of the masking estimation (top
part). The threshold of masking is calculated as follows [5, 8]. The
noise (masker) signal is first filtered with a headphone isolation
curve Hhi(z) to simulate the noise that is transferred through the
headphone into the ear canal. Then the signal is windowed and
the short-time Fourier transform (STFT) is calculated in order to
derive the power spectrum Pm(k) for the mth noise signal frame.
The frequency scale is then mapped onto the Bark scale with the
approximation [4]

ν = 13 arctan
(

0.76f

kHz

)
+ 3.5 arctan

(
f

7.5kHz

)2

, (1)

where f is the frequency in Hertz and ν is the mapped frequency in
Bark units. The energy in each critical band is the partial sum

Zm(ν) =
1

Nν

Bh(ν)∑
k=Bl(ν)

Pm(k), ν = 1, 2, ..., Nc, (2)

where Bl(ν) is the lower and Bh(ν) is the upper boundary of the
critical band ν, Nν is the number of data points in each critical band
ν, and Nc is the number of critical bands. Furthermore, the energy
of the music signal is calculated in the same way.

After that, the spreading of the masking throughout the adjacent
critical bands is approximated with a two-slope spreading function
[9]

10 log10

[
B(∆ν, LM)

]
= (3)[

− 27 + 0.37 max {LM − 40, 0} θ(∆ν)
]
|∆ν| ,

where ∆ν = ν(fmaskee) − ν(fmasker), LM is the SPL of the masker,
and θ(∆ν) is a step function equal to zero for negative values of ∆ν
and equal to one for positive values of ∆ν. The individual masking
curves with intensitiesBν are then added using a summation formula

SP,m =

(
Nc∑
ν=1

Bαν

) 1
α

, 1 ≤ α ≤ ∞, (4)
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Fig. 1. Block diagram of masking estimation and perceptual equalization processes. Thick paths contain a multichannel signal in Bark bands.

where SP,m is the overall spread masking curve, which represents
the intensity of the masking curve resulting from the combination of
Nc individual masking curves and α defines the method according
to which the curves are combined. Lufti [10] has suggested that α
should be approximately 0.33, which is the value used in this work.

The tonality of the masker affects the degree of the masking ef-
fect. According to Johnston [8], the two extremes are a tone masking
a noise and a noise masking a tone. The offset for a tone-like masker
is 14.5+ν dB and for a noise-like masker 5.5 dB. Spectral flatness is
used to estimate the tonal characteristics of the masker. The spectral
flatness Vm is defined as the ratio of the geometric and arithmetic
mean of the power spectrum [8]:

Vm = 10 log10

[∏N−1
k=0 Pm(k)

] 1
N

1
N

∑N−1
k=0 Pm(k)

, (5)

The tonality factor αm is defined as [8]

αm = min
( Vm
−60dB

, 1
)
, (6)

which is used to geometrically weight the offsets for noise and tone
to form the masking energy offset Um(ν) for each critical band [8]:

Um(ν) = αm(14.5 + ν) + (1− αm)5.5. (7)

The energy offset is then subtracted from the spread masking thresh-
old SP,m to estimate the raw masking threshold Rm [8]:

Rm(ν) = 10log10(SP,m(ν))−Um(ν)
10 . (8)

The partial masking model for complex musical sounds that is
utilized in the masking estimation is described in [5], where masked
loudness-matching functions were constructed for complex test
tones, which had realistic envelopes and harmonic structures [11] .
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Fig. 2. Block diagram of the system, where PEQ is the proposed
perceptual equalizer.

Both the masking threshold and partial masking estimations take
the level of the music and the frequency response of the headphone
Hhr(z) into account. In practice, this implies that the sensitivity of
the microphones and the headphones must be known.

3. PERCEPTUAL EQUALIZER

The perceptual equalizer (PEQ) proposed in this paper requires a pair
of headphones with a mono microphone (see Figure 2). Fortunately,
most modern headsets have an in-wire microphone built in which is
suitable for the perceptual equalizer.

Ideally, the level of the music should be raised to a level where
the noise has no influence on the listening experience, i.e., the music
has the same perceived tonal balance in a noisy environment as in a
quiet one. However, in practice the most important task is to make
the music at least audible at all frequency bands. After that, it is
advantageous to boost the partially masked components of the music
as well.

Figures 1 and 2 show the block diagrams of the whole system,
where the PEQ utilizes the masking threshold and partial masking
estimations calculated with the method described in Section 2 and
in Figure 1. The estimation of the frequency response Hhr(z) and
the isolation Hhi(z) of the headphones has been conducted using
a dummy head (head and torso simulator), and the filters are imple-
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mented using FIR filters of order 100 and 200, respectively. The per-
ceptual equalizer consists of the EQ gain computer function, which
takes the masking information as an input; the gain averaging func-
tion, which smooths the gain variation; and the high-order graphic
equalizer, which ultimately applies the equalization to the music sig-
nal, as shown in Figure 1.

3.1. Gain Calculation

After the entire masking information from one frame (the frame
length is 1 second) is estimated, the gain computer estimates in
which bands the energy of the music is below the masking thresh-
old. It is possible to set a target value with respect to the masking
threshold to which the masked sounds are boosted. Informal listen-
ing tests showed that already when the inaudible sounds are boosted
2 dB above the masking threshold, the emerging of the sounds that
were masked clearly improves the perceived frequency response of
the music.

Furthermore, the algorithm uses the partial masking information
to estimate how much the music is being masked in each Bark band
and uses these values to boost the partially masked components. The
algorithm also checks how much headroom is left in the music signal
and limits the boosting to that so as not to distort the music signal.

Moreover, controlling the amount of the partial masking effect
included is possible in the proposed equalizer. This is implemented
with an adjustable gain (0≤ gp ≤ 1) that is applied to the calculated
partial masking values. For example, for a gp value of 0, the partially
masked components are not boosted at all.

3.2. Gain Averaging

It was discovered that a large change in the gain value from one
frame to another results in an audible pumping of the sound. Thus, a
gain averaging function was implemented in order to limit the gain
variation. The size of the averaging table Nat can be adjusted. The
longer the average is, the smoother and slower the algorithm be-
comes. In other words, the size of the average table is a compromise
between the adaptation speed of the algorithm and the sound quality
of the equalized music.

Informal listening tests in this study showed that the averaging
time can be quite long (≥10 seconds), because human hearing adapts
rather slowly, and it is insensitive to short noise bursts, especially
when listening to musical content.

However, the slow adaptation speed becomes an issue when the
noise in a noisy environment ends abruptly, such as when the user
enters a quiet environment from a noisy one, e.g., from the street to
indoors. Hence, a noise activity detection (NAD) was implemented,
which resets the averaging table if the mean energy of the critical
bands drops below a set threshold value λnoise

1

Nc

Nc∑
ν=1

10log10

(
Zm(ν)

)
< λnoise. (9)

This way the equalizer is also reset, and the algorithm starts to build
a new averaging table with new gain values for the changed environ-
ment.

Furthermore, a music activity detector (MAD) was implemented
the same way as NAD, with an independent threshold λmusic to avoid
boosting when there is not enough content in the music signal. Oth-
erwise, silent parts in music would cause the equalizer to boost the
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Fig. 3. Block diagram of a fourth-order section of the graphic equal-
izer [5, 13].

signal because the music signal is below the masking threshold of
the ambient noise. This would result in an exaggerated boost, e.g.,
between music tracks. Moreover, when the averaging table is re-
set between two songs, the algorithm starts to build a new set of
gain values for the new song. People nowadays often listen to music
from playlists, and hence consecutive songs may be dissimilar and
therefore require different equalization.

The output of the gain averaging block contains the target gains
for the equalizer. A total effect depth control (0≤ gt ≤ 1) was added
to the signal chain so as to be able to adjust the effect of the equalizer
(see Figure 1). When gt = 0, the equalizer is turned off and when gt =
1, it operates according to the implemented psychoacoustic models.

3.3. Graphic Equalizer Design

The graphic equalizer used in the proposed perceptual equalizer is
based on the designs presented by Orfanidis [12] and Holters and
Zölzer [13]. With this design the gain in one band is almost com-
pletely independent of the gain in adjacent bands. Figure 3 shows
the block diagram of one fourth-order section of the graphic equal-
izer. The blocks A(z) contain a second-order allpass filter having
the transfer function

A(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2
, (10)

where a2 = 0 and a1 = cos(ΩM). The parameter ΩM is the opti-
mized center frequency of the equalizer

ΩM(ν) = 2 arctan

(√
tan

(ΩU(ν)

2

)
tan

(ΩL(ν)

2

))
, (11)

where ΩL(ν) and ΩU(ν) are the normalized lower and upper cut-
off frequencies of the ν th Bark band, respectively. Furthermore, the
used orders were 16 and 12 for the first and second Bark bands,
respectively, and 8 for all the others.

The main advantage of the high-order graphic equalizer is that
it does not require a filter bank to first decompose the music sig-
nal into frequency bands and then obtain the processed time-domain
signal by using the overlap-add method. With the current design, the
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Fig. 4. Spectrum of the music and ambient noise signal in Bark
bands, and the estimated masking threshold for the noise.

unprocessed music signal is just filtered with the graphic equalizer,
whose parameters are adjusted based on the psychoacoustic masking
estimation.

4. RESULTS

The proposed perceptual headphone equalizer was implemented in
real time with Matlab [14] and Playrec [15]. Figure 4 shows the anal-
ysis of a one-second frame, where the spectrum of the music (solid
black line) and ambience noise signal (dash-dotted line), as well as
the estimated masking threshold (dashed line), which is calculated
using the masking estimation (see Section 2 and Figure 1), are illus-
trated. Furthermore, the thick gray line shows the spectrum of the
processed music. The used ambient noise was simulated bus noise:
a white noise sequence was filtered with a linear predictive model of
a bus noise recording.

Figure 5 shows the corresponding frequency response of the per-
ceptual equalizer (solid line) and the target gain values (dots), aver-
aged over ten frames (i.e., 10 seconds), for each Bark band. The
maximum boost is limited to the available headroom in the music
signal in order not to distort the music signal. The available head-
room in this particular case was 13 dB. Furthermore, the signals from
the last of the ten frames is shown in Figure 4.

One of the additional advances of the PEQ is that the SPL stays
at a reasonable level, at least when compared to the typical volume
boost. For example, the SPL increase that the PEQ introduces in
the music signal in Figure 4 is 2.5 dB, whereas if the same low-
frequency boost is acquired with a volume adjustment, the SPL is
increased by 11 dB. Unfortunately, people often use the volume con-
trol to compensate for the masked parts of the music.

As can be seen in Figure 5, the need of the equalizer is concen-
trated at low frequencies (< 1 kHz). This is often the case, since
the isolation of headphones is usually poor below 1 kHz and the
background noise generally has pronounced low-frequency content.
Based on informal listening tests, it was observed that the proposed
equalizer gain could be restricted to the first nine Bark bands, i.e.,
20–1080 Hz, to still acquire effective results. Furthermore, when the
gain of the equalizer is varied above this frequency range, the result
can quite easily be an audible pumping sound, which deteriorates
the listening experience. The limitation of the frequency range also
greatly reduces the computational workload of the algorithm.
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Fig. 5. Magnitude response of the perceptual equalizer closely
matches the target gain values in Bark bands.

Interestingly, the overall shape of the particular PEQ in Figure
5 resembles the shape of a low-complexity loudness compensation
used in early hi-fi systems [16]. However, the proposed adaptive sys-
tem utilizes information about the content and SPL of the music and
noise signal as well as the frequency response and isolation capabil-
ities of the headphone, which allows the PEQ to adapt in numerous
listening situations.

5. CONCLUSIONS

This article introduced an adaptive perceptual equalizer for head-
phones, which is based on auditory masking models. The system
estimates the noise and music levels in the ear canal by taking the
characteristics of the headphones into account. The equalization is
implemented with a high-order graphic equalizer, which has almost
completely independent gains in each Bark band. The proposed PEQ
retains a tolerable SPL compared to the typical situation where peo-
ple compensate the masking of the music by turning up the volume.
In the example case, the PEQ increased the SPL of the music by less
than 3 dB while the maximum boost in a single subband was 11 dB,
which corresponds to the required SPL increase without the PEQ.
Furthermore, the system adapts to different types of music, head-
phones, and listening environments. Sound examples are available
online at http://www.acoustics.hut.fi/go/icassp13-peq.

6. RELATION TO PRIOR RESEARCH

In audio processing, models of auditory masking have previously
been used in perceptual coding of music [8, 17, 18, 19], in percep-
tual evaluation of audio signals [20, 21, 22], and in the reduction
of audio content for analysis and recognition [23, 24]. There have
appeared efforts to estimate and compensate the masking caused by
background noise in automotive audio [25, 26], in other noisy en-
vironments [27], and, in one previous study, in headphone listening
in a train-cabin noise at a 70-dB SPL [28]. This work expands the
latter study by providing a general framework in which noise is reg-
istered with a calibrated microphone, both the noise and music signal
are analyzed, and, based on the estimated simultaneous masking, the
music signal is corrected using a high-order adaptive equalizer to
cancel the masking and partial masking effect for headphones.
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