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ABSTRACT

In this paper, we present an approach to model bar length drum pat-
terns with weighted finite-state transducers. Motivated by the ex-
isting algorithms for speech recognition, we discuss similarities to
music, by considering a bar as word and the progression of bars as
language. However, in contrast to speech, music has special char-
acteristics, like metrical regularity and multiple notes at one point
in time, which have to be taken into account. We use MIDI data
to retrieve the drum notes for every bar, which are the input for the
training of the WFST models. Once the models are trained, they are
used to automatically recognize drum patterns and their time signa-
ture in a sequence of unknown drum notes.

We present an experiment on symbolic genre classification to
demonstrate the principle of operation, training and recognition. It
shows that the sequence of drum notes is representative for the four
genres: Rumba, Samba, Tango and Waltz leading to a genre recogni-
tion rate of 88.9%±2.8%. Applications that could benefit from this
approach include drum loop organization, drum note transcription,
music similarity and genre detection.

Index Terms— WFST, music, drums, rhythm pattern, context
modeling

1. INTRODUCTION AND RELATION TO PRIOR WORK

Towards the aim of a rhythmic description of music, we demon-
strate a statistical approach to model bar length drum patterns with
weighted finite state transducers (WFST). With the help of an exam-
ple, we want to introduce the basic idea. Figure 1 shows the score of
two drum patterns (two bars) with the time signature 3/4. To get the
WFST from the score, the notes at every eighth note step become
a transition in the WFST, leading to 6 transitions per bar. The two
drum patterns in the score notation begin with the same notes, but
have a different note sequence starting from count 2, which leads to
two different paths in the WFST. Since bars can have different time
signatures, we build one WFST model per time signature calling
them the time signature models Tts. In addition to the time signature
models, we keep the progression of the time signature of consecu-
tive bars and generate time signature progression model P . For the
example, P would simply hold the information that a bar in 3/4 can
be followed by a bar with the same time signature 3/4.

After the training of those two models, we want to automati-
cally detect drum patterns and their corresponding time signature in
a sequence of drum notes, without any knowledge of the bar bound-
aries and the time signature. We assume that a bar is characterized
by the sequence of drum notes, or in other words, we can find the
bar boundaries by looking at the drum sequences. In order to recog-
nize bars in an unknown drum note sequence we combine P and Tts
to a recognition network, which we call the rhythm model R. The
rhythm model could be applied for drum transcriptions, similarity
retrieval or genre classification.
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Fig. 1. Drum note example of two bars with time signature 3/4 and
the resulting time signature model T3/4 as WFST. For clarity, the
transitions are only labeled with the input symbol (H: Hi Hat, S:
Snare, B: Bass Drum, : no note played).

Previous work on rhythm patterns describe the temporal char-
acteristics of bars, either of the complex musical signal or with a
focus on the percussive/drum part of the music. Dixon extracts the
signal envelope of the complex musical signal and conducts a genre
recognition experiment with 50% accuracy [1]. In contrast, Paulus
and Tsunoo separate the drum signal first and then extract low level
features to calculate either the rhythmic similarity between songs [2]
or to recognize different rhythmic patterns of a song [3]. Ellis calcu-
lated basic rhythmic patterns of base drum, snare and hi hat, using
principal component analysis [4]. All afore mentioned publications
deal with the problems of finding the right meter, tempo and extract
meaningful rhythmic characteristics from the audio signal itself. We
take symbolic MIDI data as a starting point, leaving the recognition
of notes from the audio signal aside, which is discussed in detail
in [5, 6]. A recent publication of Mauch puts a focus on possibili-
ties to use MIDI data for statistical methods from ASR by analyzing
bar length drum patterns, showing the similarities to a speech cor-
pus and emphasizing the special features of bar length drum patterns
[7]. We expand those ideas by demonstrating a data driven approach
to model musical context with WFSTs on a MIDI data corpus. Lit-
tle work has been done to model the context of notes. Paulus used
N-Grams in the transcription process, but this can not capture the
interactions of drum notes within a longer rhythmic pattern [8]. Cor-
rea models the sequence and duration of notes with a bigram [9] and
Mauch introduces a statistically language model for chord progres-
sions in the domain of harmony [10].

The remainder of the paper is organized as follows. Section
2 discusses similarities to the domain of ASR. Section 3 explains
training of the time signature model, the time signature progres-
sion model and their combination to the rhythm model as well as
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the recognition process of unknown drum note sequences. Section 4
presents a genre classification experiment on the four genres Rumba,
Samba, Tango and Waltz. We discuss advantages, problems and fur-
ther applications in Section 5.

2. SIMILARITIES TO ASR

Mohri started with ideas from the speech domain and developed a
musical phoneme from audio by clustering similar feature vectors
[11] and Reed used a similar approach to detect musical phonemes to
model temporal information in music tag annotation [12]. In contrast
to Mohri and Reed, we consider a group of notes at the same point
in time as phoneme. Furthermore, we regard a bar as word and the
progression of bars as some kind of language. In the domain of
speech, the lexicon model translates from phonemes to words and the
language model describes the progression of words [13]. To stress
the similarity to music again, the lexicon would be the time signature
model Tts in the music domain, translating from notes to bars with
the time signature as output.

3. PROPOSED MODEL

The goal of the paper is to train a rhythmical model R to recognize
drum patterns in unknown drum note sequences. Figure 2 shows an
overview of the complete system with the rhythmical model R at
the top. This Section explains the system, which can be divided into
three parts: symbol construction, training and recognition.
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Fig. 2. Training and recognition process of drum patterns leading to
the rhythm model R. The rhythm model R is a combination of the
time signature models Tts and the time signature progression model
P . Training and recognition share the symbol construction.

3.1. Symbol construction

Symbol construction is the preprocessing of the MIDI file for the
training and recognition process. It involves grid quantization to
align the notes to a grid with fixed intervals, drum categorization to
reduce the number of drum notes and combining the drum categories
to one symbol at a time. The drum notes are quantized to a grid with
the fixed interval of a 16th note. The resulting grid is tempo inde-
pendent, because the actual length of the 16th note differs according
to the tempo of the song. Subsequently, we categorize the notes of a
drum kit into N = 5 categories, dismissing some of the 81 notes of
the general drum map:

1. Base Drum [B]: Acoustic Bass Drum (35), Bass Drum (36)

2. Snare [S]: Side Stick (37), Acoustic Snare (38), Electric Snare
(40)

3. Hi Hat [H]: Closed Hi Hat (42), Pedal Hi Hat (44), Open Hi
Hat (46)

4. Ride [R]: Ride Cymbal 1 (51), Ride Bell (53), Ride Cymbal
2 (59)

5. Cymbals [C]: Crash Cymbal 1 (49), Chinese Cymbal (52),
Splash Cymbal (55), Crash Cymbal 2 (57)

We combine the five drum categories to one symbol at a time.
Given the number of categories N , one can calculate the number
of possible symbols with M = 2N , which leads to 32 symbols for
N = 5. In other words, we have a set of symbols S = {s0, ...sM−1}
and one song is represented as a sequence S of symbols S(k) ∈ S
where k = 0, . . . ,K − 1. The symbol sequence S considers two
special characteristics of music. First, multiple notes at one point in
time are combined to one symbol at a time and second, the metrical
regularity is reflected by quantizing the notes to a grid. S has an
empty symbol for grid points with no note played, which preserves
the temporal structure within the WFST.

3.2. Training

The training process of the models starts with segmenting S into bars
and continues with updating the time signature progression model
P . The model P is a bigram model and it stores the time signature
of the first bar of the song, the progression of the time signature of
consecutive bars within the song and the time signature of the last
bar. Figure 3 shows an example of P for 138 Rumba songs with
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Fig. 3. Example of the time signature progression model P for 138
Rumba songs. For demonstration purposes the transitions are labeled
with the counters instead of the probabilities.
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Fig. 4. Time signature model T2/4 of 12 bars from 121 Rumba songs. For demonstration purposes the transitions are labeled with the counter
instead of the weight and an 8th-note grid is used instead of an 16th-note grid.

counters of the progressions. There are bars with four different time
signatures in the training material, where 137 songs start with a bar
in 4/4 and one song starts with a bar in 6/8. The song starting with 6/8 at
the bottom of the Figure has 137 bars and all of them are in 6/8, which
makes this Rumba song an exception. For the rest of the songs, most
of the time a 4/4 bar is followed by a 4/4 (12,614 times) and 12 times
a bar in 2/4 is inserted. Two times a bar in 6/4 occurs, which might be
interpreted as a 4/4 + 2/4.

The time signature models Tts hold the actual information of the
bar length note sequences. Every transition of the WFST Tts holds
an input symbol, an output symbol and a weight. The input symbol
is the combination of drum categories and can be an empty symbol
if no note is played at the current grid point. The output symbol
is the time signature at the transitions starting from an initial state
and an empty output symbol ε for the rest of the transitions. The
weight is the probability of every transition within the model. Every
bar is added to the model with the appropriate time signature, lead-
ing to a path within the model. Different training bars could use the
same transition, when sharing the same input symbols. The counters
of the associated transitions are incremented, causing a higher path
probability for common rhythmic patterns. Only complete bars are
processed and bars with no note events are removed from the train-
ing, since they do not hold any information about possible drum note
sequences. After adding all training bars, the probabilities of the dif-
ferent transitions for each state are estimated using the counters and
converted to negative logarithmic probabilities. Finally every model
Tts is minimized.

Figure 4 shows the time signature model T2/4 of 12 bars from
138 Rumba songs. Seven identical 2/4 bars appear in the training
material starting with B H (lowermost path). Five different drum
patterns could be observed, leading to 5 different paths within the
WFST. After adding all bars of the training data, every state of the
bigram P is replaced by the correspondent WFST model Tts to form
the rhythmical modelR.

3.3. Recognition

For the recognition process the rhythmical modelR is used as recog-
nition network. With the help of dynamic programming the best path
for a given symbol sequence S within R is determined. The output
of the recognition process is a sequence of time signature labels at
the beginning of the bars and a path weight, which reflects the suit-

ability of S to the rhythmic modelR. To recognize drum sequences,
which were not part of the training, it is possible to change sym-
bols in the sequence. Every symbol si of S is likely to occur with a
certain probability p(k, si) at every point in time k.

p(k, si) =

{
a for si = S(k)
1−a
M−1

for si 6= S(k)
(1)

The overall probability is shared between all possible symbols,
giving a high value to the actual symbol S(k) and equally sharing the
rest between the otherM−1 symbols. When the recognition process
is done on symbolic music, the symbol S(k) is known, which is
why we set a = 0.9999. Nevertheless, this procedure is needed to
recognize unknown drum note sequences in symbolic music. The
change of a symbol leads to a low probability of the symbol, which
increases the path weight.

4. EXPERIMENT ON GENRE AND TIME SIGNATURE
CLASSIFICATION

Various publications address the problem of automatic genre clas-
sification [14]. Especially Tzanetakis included rhythmic descrip-
tors as part of the system [15] and Gouyon introduced a dataset
of 8 ball room dance styles, to explicitly investigate rhyhtmic fea-
tures [16]. This data set has also been used by various other re-
searchers to evaluate rhythmic features and patterns for genre recog-
nition [1, 17, 18, 19]. In contrast to those works on audio genre
classification, we classify symbolic data into genres, which has been
also done by McKay and Lidy [20, 21]. In our experiment, the clas-
sification of the genre is solely based on the drum notes played and
their sequences within a bar.

4.1. Database

The experiment uses midi files of four different ball room dance
styles: Rumba (Rum), Samba (Sam), Tango (Tan) and Waltz (Wal).
The midi files are part of the midiart database1. Table 1 shows the
number of files per genre and the number of bars per time signa-
ture of the experiment database. Remarkably, 137 bars of the genre
Waltz have the time signature 4/4, which are two songs, having parts

1www.midi.de
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Genre Songs Bars per time signature
2/4 3/4 4/4 6/4 3/8 6/8 9/8

Rumba 138 12 - 12.765 2 - 137 -
Samba 161 102 - 16.125 8 - 98 -
Tango 47 19 - 4.673 - - - -
Waltz 158 141 22.872 137 - 9 3.747 3

Total 504 274 22.872 33.700 10 9 3.982 3

Table 1. Number of songs per genre and the number of bars per time
signature.

in 3/4 and 4/4. Those two Waltz songs have segments from two differ-
ent genres: Waltz and Rock. Furthermore, both Rumba and Samba
have bars in 6/8. For Rumba, it is one complete song in 6/8 and for
Samba one song having 87 bars in 4/4 and 98 bars in 6/8. We decided
to leave all of those uncommon songs in the database to investigate
the resulting effects.

4.2. Settings

To classify drum note sequences S with respect to genre, one rhythm
model Rg per genre is trained. With the help of dynamic program-
ming, we determine the best path for a sequence S of the test set
within every genre rhythm model Rg . The rhythmical model Rg

with the minimal path weight determines the genre of the test song.
Additionally, the output symbols of Rg are time signature labels at
the beginning of every bar, which can be evaluated to determine the
bar boundaries and the time signature of a song. The song-wise time
signature is the one most bars belong to. A 10-fold cross validation
is performed to achieve the recognition results.

4.3. Results

The genre classification of the 504 files with 10-fold cross valida-
tion leads to a correctness of 88.9% ± 2.8%. Figure 5 shows the
confusion matrix. We obtain a fairly high recognition rate, which
could be explained with the use of symbolic MIDI data and the re-
striction on only four distinctive rhythmic genres. A closer look on
the results reveals the influence of the uncommon songs within the
training database. For example, the two Waltz songs that are classi-
fied as Rumba fit to the drum pattern of the Rumba song in 6/8 and
the drum patterns of the two Samba songs classified as Waltz match
the bars in 4/4 of the uncommon Waltz songs. We expected, that those
errors would be suppressed by the time signature progression model
P , but it seems that the ratio of the weights between P and the time
signature model Tts have to be adjusted. In the domain of ASR, this
is done by the language model factor. Other confusions are caused
simply by the fact that the drum note sequence S of a song matches
the sequence of a different genre. For example, some basic drum
patterns are used in more than one genre.

After choosing the best genre modelRg , the output of time sig-
nature labels at every bar boundary is evaluated. Figure 6 shows
the song-wise time signature confusion matrix. For 98.6% ± 1.0%
songs the time signature is correctly detected. Within the 504 midi
files 60,850 bars occur. The correctness of the label at the bar bound-
ary is 95.8%± 0.2%. Error types are division of a bar in 4/4 into two
2/4 bars or the mapping of three bars in 4/4 to four bars in 3/4.
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Fig. 5. Confusion matrix of the four genres Rumba, Samba, Tango
and Waltz.
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Fig. 6. Confusion matrix of the song-wise time signature.

5. CONCLUSIONS

We showed how to model bar-length drum note patterns with WF-
STs using MIDI files for the training and evaluation. For every bar
of the training material the sequence of drum notes is modeled with
the time signature model Tts. Combined with the time signature pro-
gression model P it forms a recognition network, called the rhythm
model R. The rhythm model R can be used to recognize drum pat-
terns in a sequence of unknown drum notes. The suitability of the
model to describe rhythm could be shown with the help of a sym-
bolic genre classification experiment, leading to 88.9%± 2.8% cor-
rectness for the four genres Rumba, Samba, Tango and Waltz.

Future work will concentrate on extending the approach to other
instruments and using the model with real audio. Challenges involve
the grid with fixed intervals, which has to be calculated from the au-
dio material. This issue is addressed by work on the metrical analysis
and the fastest pulse of music [22, 23]. However, the grid must not
necessarily belong to one specific note type, which might be diffi-
cult to determine automatically, but could be defined as time interval
range. For example, with the time intervals between 100 - 200ms,
a song in 120 bpm would lead to a 16th note grid with 125ms grid
interval and a song in 70 bpm to a 32th note grid with an interval of
107ms.

Besides genre classification the rhythm model R could be used
for similarity retrieval, by modeling exactly one song and getting
a weight for drum note sequences of other songs within R. Within
the transcription process of drum notes from audio,R could serve as
musical model [6]. The presented approach is a contribution towards
a better modeling of the temporal features of music.

722



6. REFERENCES

[1] Simon Dixon, Fabien Gouyon, and Gerhard Widmer, “Towards
characterization of music via rhythmic patterns,” in ISMIR, 5th
International Society for Music Information Retrieval Confer-
ence, Barcelona, Spain, 2004, pp. 509–516.

[2] Jouni Paulus and Anssi Klapuri, “Measuring the similarity of
rhythmic patterns,” in ISMIR, 3rd International Society for
Music Information Retrieval Conference, Paris, France, 2002,
pp. 150–156.

[3] Emiru Tsunoo, Nobutaka Ono, and Shigeki Sagayama,
“Rhythm map: Extraction of unit rhythmic patterns and anal-
ysis of rhythmic structure from music acoustic signals,” in
ICASSP, Proc. IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, Taipei, Taiwan, 2009, pp. 185–188.

[4] Daniel P.W. Ellis and John Arroyo, “Eigenrhythms: Drum pat-
tern basis sets for classification and generation,” in ISMIR, 5th
International Society for Music Information Retrieval Confer-
ence, Barcelona, Spain, 2004, pp. 554–559.
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