
EFFICIENT DATABASE PRUNING FOR LARGE-SCALE COVER SONG RECOGNITION

J. Osmalskyj, S. Piérard, M. Van Droogenbroeck, J.J. Embrechts

INTELSIG Laboratory, Departement EECS
University of Liège, Belgium

{josmalsky, jjembrechts}@ulg.ac.be

ABSTRACT

This paper focuses on cover song recognition over a large
dataset, potentially containing millions of songs. At this
time, the problem of cover song recognition is still chal-
lenging and only few methods have been proposed on large
scale databases. We present an efficient method for quickly
extracting a small subset from a large database in which a
correspondence to an audio query should be found. We make
use of fast rejectors based on independent audio features.
Our method mixes independent rejectors together to build
composite ones. We evaluate our system with the Million
Song Dataset and we present composite rejectors offering a
good trade-off between the percentage of pruning and the
percentage of loss.

Index Terms— Million Song Dataset, Music Information
Retrieval, Chromas, Rejectors, Cover Songs

1. INTRODUCTION

Recent years have seen an increasing availability of large mu-
sic databases and services. Companies such as Spotify and
Shazam make extensive use of such databases which usually
contain millions of songs. Music Information Retrieval (MIR)
allows the development of new techniques for browsing such
collections. One typical MIR task is cover song recognition,
whose goal is to identify different versions of the same under-
lying musical piece. Such a version can be very different from
the original track in terms of instrumentation, pitch, tempo,
etc.

Cover song recognition has been widely studied in the
past years. Most of the existing methods make use of direct
comparisons of chroma features (see Section 3.2) between
pairs of songs using dynamic programing techniques [1]. Al-
though these methods produce interesting results on small and
medium size datasets, they require a huge amount of com-
putation, making them unsuitable with large datasets. How-
ever, some work was done to handle larger sets: Casey and
Slaney [2, 3] use Locally-Sensitive Hashing (LSH) to com-
pare chroma patches. Yu et al. [4] also use LSH to compare
song statistics. An overview of methods for cover song recog-
nition can be found in [5].

Query

Database

Rejector 1

Rejector 2

Rejector 3

Combination of rejectors

PruningLoss

Database subset

Fig. 1. For a given query song, our method prunes a database
with a combination of rejectors that returns a small subset
of the original dataset. There is a trade-off between the per-
centage of pruning and the loss of the rejectors. These two
characteristics are defined in Section 2.

For the development of these techniques, researchers had
to face the lack of a large public dataset, forcing them to eval-
uate their systems on individual datasets containing at most
a few hundred songs. In 2011, the Million Song Dataset
(MSD) [6] was released to solve this dataset issue. It contains
audio features for one million tracks, including chroma vec-
tors. It also features a list of 12,960 cover songs, the Second-
HandSongs dataset (SHSD), making it suitable for our task.

Bertin-Mahieux et al. [7] were the first to propose a scal-
able method, usable on the MSD dataset, using hash codes
inspired by [8]. More recently, they proposed a new ap-
proach [9] by projecting an entire song into a small dimension
space and using nearest neighbors as candidate covers.

In this paper, we propose a new approach to the problem
of cover song recognition in large-scale databases, and we
evaluate it on the MSD. We propose a fast method to prune
the search database by reducing the size of the search set (106

in the case of the MSD) to a smaller subset of songs (see Fig-
ure 1). We make use of the features available in the MSD to
create rejectors, whose role is to reject a subset of the database
and to keep a smaller amount of songs in which further pro-
cessing could be applied to find the best cover match. We
first create two simple rejectors based on the tempo and the
duration of the query song. We also create a more powerful
rejector based on bag-of-words of chroma features (see Sec-
tion 3.2). Our chroma rejector is particularly efficient because

714978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

it uses the Euclidean distance (which is fast to compute) to
compare pairs of songs. We finally show that mixing these
rejectors produces better results than using them individually.

The remaining of this paper is organized as follows. The
next section introduces the notion of rejector and explains our
assessment method. Section 3 presents the three elementary
rejectors used in our method. Then, in Section 4, we develop
the combination of rejectors to obtain better results. Finally,
we conclude the paper in Section 5.

2. REJECTORS AND EVALUATION METHOD

Cover song recognition deals with databases containing mil-
lions of songs. In this paper, we focus on retrieving at least
one version corresponding to a query. Therefore, our goal is
to dramatically decrease the size of the search set very fast,
while ensuring the presence of one corresponding version in
the remaining subset. To achieve such a reduction, we prune
the dataset based on audio criteria using rejectors. A rejector
takes a query song q as an input, and returns a subset S of the
search database D containing only songs related to that query
according to a criterion κ:

S(D, q) = Rejectorκ(D, q) with S(D, q) ⊆ D.

The criteria are based on the audio features precomputed in
D. A criterion can depend on a parameter ∆. Such a pa-
rameter allows one to tune the tolerance when two tracks are
compared with respect to κ in order to determine if they rep-
resent two versions of the same song. This paper focuses on
criteria consuming low temporal resources when applied on
large databases.

To evaluate the performances of a rejector, one has to
consider both the pruning rate and the risk to reject all
the corresponding versions from D . Ideally, the pruning
should be maximized while the loss is minimized, but in
practice there is a trade-off between these two aims. In the
remaining of this paper, we present our results in the form
of plots displaying all the reachable (pruning (∆) , loss (∆))
pairs. We call these plots Prune-Loss Curves (PLC). When
∆ ∈ R, these points define a curve and when ∆ ∈ Rn with
n > 1, they define a surface. Only its lower boundary is
of practical interest. A rejector obtained with a parameter
∆ is of practical interest only if there exists no ∆′ such
that pruning (∆′) > pruning (∆) and loss (∆′) ≤ loss (∆),
or such that pruning (∆′) ≥ pruning (∆) and loss (∆′) <
loss (∆).

Let us denote the set of queries by Q. The loss and prun-
ing rates are computed as follows:

loss =
1

|Q|
∑
q∈Q

(1− L (S (D, q) , q))

pruning =
1

|Q|
∑
q∈Q

|D| − |S (D, q)|
|D|

,

where

L(X , x) =

{
1 if ∃x′ ∈ X : Tκ (x, x′) = 1

0 otherwise

and

Tκ (x, x′) =


1 ifx andx′ are two different

versions of the same song
0 otherwise.

The presented results are obtained with the MSD (D) and
the SHSD (Q). We have |D| = 106 and |Q| = 12, 960. The
performances of the rejectors studied in this paper are com-
pared to the performances of a naive one on the graphs. By
definition, a naive rejector takes its decision without consider-
ing the information provided in the query. Let ∆ξ be the prob-
ability to drop a track , and let us denote, by pj , the proportion
of queries q ∈ Q that have exactly j versions x ∈ D such
that Tκ (x, q) = 1. We have (pruning (∆ξ) , loss (∆ξ)) =(

∆ξ,
∑∞
j=1 pj∆

j
ξ

)
.

3. ELEMENTARY REJECTORS

Cover songs are often very different from the original under-
lying piece. To compare versions, we need a criterion which
is common to each version, but insensitive to the differences
between them. In this section, we present three elementary
rejectors and evaluate them individually. In Section 4, we
will merge them into a more powerful composite rejector. We
first consider two simple rejectors in Section 3.1, and then a
rejector based on chroma features in Section 3.2.

3.1. Duration and tempo rejectors

The duration rejector works as follows. For a query q whose
duration is t(q), it selects the songs inD with a duration com-
prised in t(q)±∆t%. ∆t is the parameter of this rejector. The
tempo rejector works in a similar way. Let us assume that the
tempo of the query q is b(q), in beats per minute. The rejector
keeps the songs in D whose tempo is in the range b(q)±∆b.
∆b is expressed in beats per minute.

Figure 2 shows the results of these two simple elementary
rejectors. In the following, we introduce a more powerful
rejector which lowers the prune-loss curve towards the ideal
point (pruning, loss) = (100 %, 0 %).

3.2. Chroma rejector

To achieve better results, we consider a harmonic related cri-
terion. Harmonic information is insensitive to the version of a
song [10]. Descriptors related to harmonic information exist
in the literature and are referred to as chroma features. They
are derived from the spectrogram and describe the harmonic
content of a song.

715

0 20 40 60 80 100
Pruning (%)

0

20

40

60

80

100
Lo
ss
 (%

)
Simple independant rejectors

Duration rejector
Tempo rejector
Naive rejector

Fig. 2. Performances of the duration and tempo rejectors
on the MSD. The parameter ∆t of the former varies in the
[0,∞] % range. The parameter ∆b of the latter varies in the
[0, 100] bpm range.

Chroma features were first proposed by [11] as pitch class
profiles (PCP). Many improvements over the original PCP
were introduced later, including HPCP [12] and CENS [13].
An overview of chroma features can be found in [14]. Ac-
cording to [9], none of these features were fully satisfying
in their raw format for cover songs recognition. Indeed, the
processing of such a huge amount of information requires
much computation, making it unsuitable for large datasets
such as the MSD. A more compact representation still based
on chroma features is presented in [15], where the description
of the songs is based on a clustering algorithm over chroma
patches. We created an alternative representation which re-
quires less processing.

Our method is based on the assumption that many chroma
vectors could be grouped to form a set of similar vectors. In
order to obtain a set of clusters of similar chromas, we applied
a K-Means algorithm [16] on a random set of 2×106 chroma
vectors extracted from the MSD. The number of clusters was
arbitrarily set to 50 clusters.

Using the clustering model, we computed a bag-of-words
representation as follows. The clusters can be seen as a base
vocabulary for our description. To compute a bag-of-words,
we simply count the number of occurrences of each cluster in
a song by classifying each chroma vector in one of the fifty
clusters. Therefore, we obtain a compact 50-dimensional
representation which still describes well the harmony of
a song. Moreover, we make this description invariant to
pitch changes by applying the Optimal Transposition Index
(OTI) [17] method when comparing two songs. This method
computes the best shift to transpose a song A to the pitch of
a song B. Clustering the resulting transposition gives compa-
rable pitch-invariant bag-of-words. Figure 3 illustrates that
cover songs have similar bag-of-words, while they allow to
differentiate from a completely different song.

Using our bag-of-words representation, we created a re-

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Clusters

O
c
c
u
re

n
c
e
s

Little Liar − Original version (Joan Jett)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Clusters

O
c
c
u
re

n
c
e
s

Little Liar − Cover band version

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

Clusters

O
c
c
u

re
n
c
e

s

Summer of 69 − Original version (Bryan Adams)

Fig. 3. Bag-of-words representations of 3 songs. The up-
per ones correspond to two versions of “Little Liar” by Joan
Jett, and the third one to a different song (“Summer of 69” by
Bryan Adams). We note similarities between the versions of
the same piece, and differences with an unrelated song.

jector which returns the N = ∆c |D| nearest neighbors of the
query song in terms of harmonic content. ∆c is the param-
eter of the rejector, which takes its value in the [0 %, 100 %]
range. From a query song, the chroma features are extracted
either from the MSD in the case of the SHSD evaluation, or
from the EchoNest [18] using their Analyze engine. This en-
gine provides exactly the same features as those available in
the MSD, allowing us to use our system with any audio input.
Once the chromas are retrieved, each of them is classified in
a cluster using our K-Means model, thus providing a bag-of-
words describing the song. The resulting histogram is then
normalized so that the sum of all bins equals 1.

The bag-of-words is then compared to each song of
the database. Since each song is represented by a low-
dimensional histogram, the computation of distance mea-
sures (such as the Euclidean distance or the Bhattacharyya
distance [19]) is very efficient. Before computing the dis-
tance between pairs of songs, we compute the OTI to shift
the query so that it matches the pitch of the database song.
Therefore, the distance between two versions does not de-
pend on the pitch. The resulting distances are sorted and the
N first matches are returned by the rejector.

Figure 4 shows the results obtained with the bag-of-words
rejector. The comparison of Figures 2 and 4 establishes that
the bag-of-words rejector improves the performance consid-
erably. In the next section, we show that we can combine
our three elementary rejectors to obtain a composite rejector
producing even better results.

716

0 20 40 60 80 100
Pruning (%)

0

20

40

60

80

100
Lo
ss
 (%

)
Powerfull bag of words rejector

Chroma rejector
Naive rejector

Fig. 4. Performance of our bag-of-words rejector. The pa-
rameter ∆c varies between 0 % and 100 %. This rejector out-
performs the ones presented in Figure 2.

4. COMPOSITE REJECTORS

In this section, we combine our three elementary rejectors. To
achieve better results, we define the following three combina-
tions of the rejectors:

S∗k(D, q) =

{
d ∈ D

∣∣∣∣∣
3∑
i=1

L(Si(D, q), d) > k

}

where S1, S2, and S3 denote the subsets provided by the ele-
mentary rejectors. The first composite rejector, S∗1 is named
union since one can demonstrate that S∗1 = S1 ∪ S2 ∪ S3.
The second one is obtained following a majority vote strat-
egy. And the third one is named intersection since S∗3 =
S1 ∩ S2 ∩ S3. From a computational point of view, the last
one can been seen as a cascade of rejectors [20, 21].

The results of our composite rejectors are depicted in Fig-
ure 5. If the goal is to minimize the loss while keeping the
pruning above a significant level, then the best results are ob-
tained with the majority vote rejector. However, if the goal is
to maximize the pruning while maintaining the loss below a
low threshold, then the union rejector is preferable.

Inevitably, composite rejectors are built on top of elemen-
tary rejectors. We have proposed three of them, nevertheless
others could be considered in conjunction or in replacement.
It should however be stressed that the elementary rejectors
need to be selected carefully. To minimize the computation
time, we aim at extracting and treating the information only
once. Therefore, we have selected mutually independent cri-
teria. For example, it is preferable to consider the tempo over
the total number of beats, since the number of beats depends
on the song duration, while the tempo is not.

In this paper, we have expressed the intrinsic trade-off of
rejectors based on a loss vs pruning analysis. Another way
of expressing the same compromise would be based on a loss
vs expected computation time analysis. Such an analysis is

0 20 40 60 80 100
Pruning (%)

0

20

40

60

80

100

Lo
ss
 (%

)

Composite Rejectors

Union
Intersection
Majority vote
Naive rejector

Fig. 5. Performances of the three composite rejectors evalu-
ated on the MSD. Only the rejectors of interest, as defined in
Section 2, are shown for each composite rejector.

left for future work since the computation time of a compos-
ite rejector does not depend only on the pruning rate. It de-
pends on (i) the complexity of the elementary rejectors, (ii)
their parameters, (iii) their pruning, (iv) the order in which
they are queried, and (v) the way their answers are combined
(i.e. union, intersection, majority vote, etc). Moreover, our
three composite rejectors are implemented with short-circuit
operations, which complicates the analysis.

5. CONCLUSIONS

This paper focuses on cover song recognition in large-scale
databases. In order to speed up queries, we have developed a
fast database pruning method. Our goal is not to find a unique
match to an audio query, but rather to reduce the search set
as fast as possible. Further analysis can be subsequently con-
ducted on the remaining subset to identify a precise match.

Our database pruning method is built on top of rejectors.
We have provided the performance achieved by three elemen-
tary rejectors related to independent audio features, namely
the duration, the tempo, and the harmonic content of the
songs. We have also presented the results obtained with three
composite rejectors, obtained by combining the elementary
ones. We have established that such a combination improves
the overall performance. Our method applied on the Million
Song Dataset is able to reduce the search size with a very low
risk of dropping the target song. Furthermore, our algorithm
has the big advantage of being very fast.

To our knowledge, only few methods are usable for large
datasets such as the Million Song Dataset and this paper is
a step forward towards cover song recognition for very large
datasets. Moreover, our method can be seen as a universal
strategy to develop database pruning methods, and could be
applied to other computer science fields such as computer vi-
sion or data mining.

717

6. REFERENCES

[1] J. Serra, Identification of versions of the same musi-
cal composition by processing audio descriptions, Ph.D.
thesis, Universitat Pompeu Fabra, Barcelona, 2011.

[2] M. Casey and M. Slaney, “Fast recognition of remixed
audio,” in Proceedings of the Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2007.

[3] M. Casey, C. Rhodes, and M. Slaney, “Analysis of min-
imum distances in high-dimensional musical spaces,”
IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 16, no. 5, pp. 1015–1028, July 2008.

[4] Y. Yu, M. Crucianu, V. Oria, and L. Chen, “Local
summarization and multi-level lsh for retrieving multi-
variant audio tracks,” in Proceedings of the seventeen
ACM international conference on Multimedia, 2009, pp.
341–350.

[5] J. Serra, E. Gomez, and P. Herrera, “Audio cover song
identification and similarity: Background, approaches,
evaluation, and beyond,” in Advances in Music Infor-
mation Retrieval, pp. 307–332. Springer Berlin / Hei-
delberg, 2010.

[6] T. Bertin-Mahieux, D. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” in Proceedings
of the International Symposium on Music Information
Retrieval (ISMIR), 2011.

[7] T. Bertin-Mahieux and D. Ellis, “Large-scale cover song
recognition using hashed chroma landmarks,” in Pro-
ceedings of IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2011.

[8] A. Wang, “An industrial-strength audio search algo-
rithm,” in Proceedings of the International Symposium
on Music Information Retrieval (ISMIR), 2003, pp. 7–
13.

[9] T. Bertin-Mahieux and D. Ellis, “Large-scale cover song
recognition using the 2D Fourier transform magnitude,”
in Proceedings of the 13th International Conference on
Music Information Retrieval (ISMIR), 2012.

[10] J. Osmalskyj, J.-J. Embrechts, M. Van Droogenbroeck,
and S. Piérard, “Neural networks for musical chords
recognition,” in Journées d’informatique musicale,
Mons, Belgium, 2012.

[11] T. Fujishima, “Realtime chord recognition of musical
sound: a system using Common Lisp music,” in Pro-
ceedings og the International Computer Music Confer-
ence (ICMC), 1999, pp. 464–467.

[12] E. Gomez and P. Herrera, “Automatic extraction of tonal
metadata from polyphonic audio recordings,” in Pro-
ceedings of the 25th International Audio Engineering
Society Conference (AES), 2004.

[13] M. Müller, F. Kurth, and M. Clausen, “Audio matching
via chroma-based statistical features,” in Proceedings
of the International Symposium on Music Information
Retrieval (ISMIR), 2005, pp. 288–295.

[14] N. Jiang, P. Grosche, V. Konz, and M. Müller, “Ana-
lyzing chroma feature types for automated chord recog-
nition,” in Proceedings of the 42nd AES Conference,
2011.

[15] T. Bertin-Mahieux, R. Weiss, and D. Ellis, “Cluster-
ing beat-chroma patterns in a large music database,” in
Proceedings of the International Symposium on Music
Information Retrieval (ISMIR), 2010.

[16] J. MacQueen, “Some methods for classification and
analysis of multivariate observations,” in 5th Berkeley
Symposium on Mathematical Statistics and Probability.
1967, vol. 1, pp. 281–297, University of California.

[17] J. Serra, E. Gomez, P. Herrera, and X. Serra, “Chroma
binary similarity and local alignment applied to cover
song identification,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 16, no. 6, pp.
1138–1152, 2008.

[18] The Echo Nest team, “The echo nest,” http://the.
echonest.com.

[19] M. Deza and E. Deza, Encyclopedia of Distances,
Springer, 2009.

[20] P. Viola and M. Jones, “Rapid object detection us-
ing a boosted cascade of simple features,” in IEEE
International Conference on Computer Vision and Pat-
tern Recognition (CVPR), Kauai, USA, December 2001,
vol. 1, pp. 511–518.

[21] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast
human detection using a cascade of histograms of ori-
ented gradients,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision and Pat-
tern Recognition (CVPR), New York, USA, June 2006,
vol. 2, pp. 1491–1498.

718

