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ABSTRACT 

 

The aim of this study is to present a complexity measure 

(Normalized Shannon Entropy) based on the S-Transform 

Spectrogram (ST-Spectrogram) plane, which can be 

considered as a variant of the Cohen’s class. The ST-

Spectrogram verifies the non-negativity condition which 

makes the application of the famous Shannon Entropy 

measure possible. A concrete application presented in this 

paper consists to detect pathologic heart sounds with systolic 

murmurs. A systolic period which contains murmurs is 

usually more complex than normal sound. The complexity 

measure applied on the ST-Spectrogram is used as feature to 

classify normal and pathologic heart sounds. A comparison 

with the classical spectrogram (STFT-Spectrogram) is 

performed by calculating the different Receiver Operating 

Curves (ROC) and the robustness against additive Gaussian 

noise is discussed. 

Index Terms— Time-Frequency, Shannon Entropy, 

Stockwell Transform, heart sounds, classification. 

 

1. INTRODUCTION 

 

The Time-Frequency (TF) complexity measures aim to 

quantify the complexity of the signal via the Time-

Frequency Representation (TFR) and not directly via the 

signal. In this case, the TFRs play an analogous role to a 2-D 

Probability Density Function (PDF) [1]. Although, not all 

TFRs can be considered strictly as PDF; for example, the 

Cohen’s class which generalized all quadratic TFRs cannot 

satisfy the the time marginal property and the non-negativity 

(eq. 2) and (eq. 1) simultaneously [2]. However, it does not 

preclude applying complexity measures based on Cohen’s 

TFRs planes especially when it could prove more 

appropriate for certain classes of signals [1]. 
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The Stockwell Transform (ST) can be considered as a 

hybrid between the Short Time Frequency Transform 

(STFT) and the wavelet transform [3]. It can be viewed as a 

frequency dependent STFT or a phase corrected wavelet 

transform. The ST has gained popularity in the signal 

processing community because of its easy interpretation and 

fast computation [4]. A normal transition between the ST 

which is a linear transform and the corresponding time-

frequency energy distribution is the square of the magnitude 

of the S-matrix named in this paper the ST-Spectrogram 

which is a quadratic transform.  The ST-spectrogram can be 

considered as a variation of the Cohen’s class distributions 

with a frequency dependent kernel function [4].  It verifies 

the non-negativity property which is desirable for physical 

interpretation and makes the famous Shannon Entropy 

complexity measure [5] possible which is not the case of 

Wigner-Ville distribution for example [1]. In addition, the 

ST has been shown high performance in classification and 

feature extraction problems applied on non-stationary 

signals, such as heart sounds [6, 7], power quality signals 

[8], etc.  

The main contribution of this study is the presentation of a 

signal complexity measure based on Normalized Shannon 

Entropy (NSE) and ST-Spectrogram. The main studies 

which introduced the information content measure via the 

TFR plane [1, 9] focused on the Rényi Entropy measure 

applied on the Wigner-Ville distribution which precludes the 

using of Shannon Entropy due to the existence of negative 

coefficients in this distribution. In this paper, the ST-

Spectrogram is used for the first time, as TFR plane, from 

which we estimate the information content with the NSE. A 

concrete application of this measure is the classification of 

normal and pathological heart sounds. The pathologic heart 

sounds are more complex than the normal sounds; hence, the 

possibility to use the NSE features to estimate the 

complexity of sounds via the ST-Spectrogram plane. 

This paper is organized as follows: Section 2 presents the S-

Transform and the link with the Cohen’s class. It is followed 

by section 3 which presents a NSE complexity measure 

applied on the ST-Spectrogram coefficients. Section 4 

describes the heart sounds and presents the results of the 

classification of normal and pathologic sounds. Finally, 

section 5 gives the conclusion and the future work. 
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2. S-TRANSFORM SPECTROGRAM AND COHEN’S 

CLASS 

 

The S-Transform originates from two advanced signal 

processing tools, the Short Time Fourier Transform (STFT) 

and the Wavelet Transform (WT). It can be viewed as a 

frequency dependent STFT or a phase corrected WT. The 

generalized S-Transform of a time varying signal )(tx  is 

defined by: 
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Where the window function ),( ftw   is chosen as: 
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And )( f is a function of frequency as: 
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The window is normalized as: 
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This gives the direct relation between the S-transform and 

the Fourier spectrum by averaging the local spectrum over 

time: 
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Where )( fX is the Fourier transform of )(tx . 

If we consider the squared modulus of the S-Transform 

or the ST-Spectrogram, we obtain an energy distribution of 

the signal in time-frequency plane. The ST-Spectrogram is 

given as: 
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The relation with the Cohen Class can be given as [4]: 
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With the frequency dependent Kernel function ∅ is given as: 
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3. NORMALIZED SHANNON ENTROPY 

 

The Shannon Entropy is a natural candidate for measuring 

the complexity of a signal through TFR. It is applicable on 

the ST-Spectrogram coefficients ( xC ) since the ST-

spectrogram verifies the non-negativity condition. The 

Shannon Entropy is defined as follows: 

 dtdfftCftCCH xxx ),(log),()( 2  (13) 

To normalize the Shannon entropy, we normalize first the 

coefficients of the ST-spectrogram as follows: 
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The maximum of Shannon Entropy, which correspond to 

equiprobable events case, can be given as: 
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Where, n is the samples number of the signal )(tx , m is the 

number of frequency voices used to calculate the ST-

spectrogram and mn is the total number of coefficients in 

the ),( ftCnorm

x  distribution. Therefore, the normalized 

Shannon Entropy can be given as: 
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4. APPLICATION ON THE CLASSFICATION OF 

HEART SOUNDS 

 

4.1. Heart sounds 

 

The analysis of the cardiac sounds solely based on the 

human ear is limited by the experience of the clinician for a 

reliable diagnosis of cardiac pathologies and to obtain all the 

qualitative and quantitative information about cardiac 

activity. Proposing an objective signal processing methods 

able to extract relevant information from heart sounds is a 

great challenge for specialists and auto-diagnosis fields. The 

electronic stethoscope is capable to register and optimize the 

quality of the acoustic heart signal, completed by the 

PhonoCardioGraphic (PCG) presentation of the auscultation 

signal. 

The main application of this paper is the automatic detection 

of heart murmurs. Heart murmurs usually result from 

turbulence in blood flow or the vibration of heart tissues 

which can occur in a systolic or diastolic period. The 

presence of murmurs increases the heart sound complexity 

[10].  Several recent studies use methods for nonlinear and 

chaotic signals to estimate the signal complexity and detect 

murmurs [10-12]. These methods are generally based on the 

reconstructed state space which explores the non-linear 

behavior and the non-Gaussian components of the signal. 

However, even though it seems reasonable to expect the 
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nonlinear and chaotic characteristics of turbulence in blood 

flow [13] through a vessel to be reflected in the murmurs, it 

is well accepted that recorded signals do not necessarily 

reflect the nonlinear and chaotic behavior of the underlying 

system [14, 15]. Moreover, application of such methods 

suited for nonlinear or chaotic signals might be an 

unnecessary increase in algorithm complexity compared to 

linear methods based on autocorrelation and power spectrum 

[15]. Therefore, in this study, we apply the complexity 

measure on the TFR plane (ST-Spectrogram) instead of the 

reconstructed state space, to detect murmurs in heart sounds. 

 

 
Fig.1. Example of a normal (top) and pathologic (bottom) heart 

sounds with systolic murmur. 

 

4.2. Dataset 

 

The heart sounds have been collected in the Hospital of 

Strasbourg (France) where Different cardiologists equipped 

with a prototype electronic stethoscope have contributed to a 

campaign of measurements. The sounds are recorded with 

16 bits accuracy and 8000Hz sampling frequency in a wave 

format, using the software “Stetho” developed under 

Alcatel-Lucent license. 

This study includes 30 heart sounds separated into two 

groups: 15 normal sounds and 15 pathologic sounds with 

systolic murmurs (see figure 1). 

 

4.3. Results and discussion 

 

The sounds are automatically segmented in order to extract 

systolic periods from heart sounds. Accurate segmentation 

of heart sounds is essential for the extraction of meaningful 

features, well oriented, from each part of heart cycles. The 

segmentation algorithm used in this paper is based on the ST 

(named OSSE algorithm) was proposed by the authors in 

[16].The results were visually inspected by a cardiologist 

and erroneously extracted sounds were excluded from the 

study. The feature extraction process extracts a NSE feature 

value (based on ST or STFT spectrogram) per extracted 

systolic signal and each of these features is averaged across 

available systolic signals from each subject. So from each 

subject in the database, we obtain one feature that quantifies 

the complexity of systolic periods in the heart sound. The 

NSE feature is evaluated by calculating the Area Under 

Curve (AUC) for ST and STFT for three levels of noise: 

first level correspond to the experimental sounds acquired in 

clinical conditions (the patient’s position during 

auscultation, the surrounding noise, etc.) and two levels 

(Noise1 and Noise2) correspond to the two increasing levels 

of additive white Gaussian noise.  

 

 

 
Fig.2. NSEs applied on the ST-Spectrogram plane for normal and 

pathologic segmented systolic sounds. 

 

 

 

Fig.3. ROCs for the NSE applied on the ST-Spectrogram (solid 

line, AUC=0.98) and the STFT-Spectrogram (dashed line, AUC= 

0.93). 

 

The peaky TFRs of signals comprised of small numbers of 

elementary components would yield small entropy values, 

while the diffuse TFRs of more complicated signals would 

yield large entropy values [1]. Figure 2 shows an example of 

normal and pathologic systolic sounds and their NSEs based 
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on ST-Spectrogram. The number of component in 

pathologic sound with the presence of murmur is higher than 

the normal systole, which explains the higher NSE (0.88).  

Figure 3 shows a comparison between the extracted NSEs 

based on the ST and the STFT spectrograms.  The ST-

Spectrogram showed the highest AUC (0.98).   

The robustness of the ST-Spectrogram based features 

against additive noise is presented in figure 4. The AUC is 

0.88 for the highest level of noise (Noise 3) which can be 

considered as good classification rate.  

 

 

 

Fig.4. Variation of the ROC against white additive Gaussian noise 

for the ST-Spectrogram; clinical sounds without additive noise 

(AUC=0.98), noise1 (medium level noise, AUC=0.93) and noise2 

(high level noise, AUC=0.88)  

 

Figure 5 shows the robustness of the NSE measures based 

on the STFT-Spectrogram against additive noise. For the 

clinical sounds the extracted features give a good 

performance (AUC=0.93) but this is not the case in the 

presence of additive noise (0.83 and 0.7) where the 

performance decreases significantly.  

The NSE based on ST-Spectrogram shows a high 

performance in the classification of normal and pathologic 

heart sounds. The results are summarized in Table 1. 

 

Table 1: Shows the variation of AUC against white additive noise 

for the ST and the STFT spectrograms. 

Spectrogram AUC1 AUC2 AUC3 

ST 0.98 0.93 0.88 

STFT 0.93 0.84 0.7 

 

 

Fig.5. Variation of the ROC against white additive Gaussian noise 

for the STFT-Spectrogram; clinical sounds without additive noise 

(AUC=0.93), noise1 (medium level noise, AUC=0.84) and noise2 

(high level noise, AUC=0.7)  

 

 

5. CONCLUSION 

 

We presented in this paper a Normalized Shannon Entropy 

measure based on the ST-Spectrogram coefficients in order 

to estimate the signal complexity via TFR plane. The ST-

Spectrogram is a part of the Cohen’s class and it verifies the 

non-negativity condition which makes the application of the 

Shannon Entropy measure possible. The NSE based on ST-

Spectrogram showed a very good performance in the 

classification of normal and pathologic heart sounds which 

can be characterized by their increased complexity. A 

comparison with the classic STFT-Spectrogram was 

performed and the results showed a large preference for the 

ST-Spectrogram, mainly in presence of additive noise. 

However, to distinguish between the different origin of the 

detected murmurs (stenos aortic, mitral insufficiency, etc.) 

several features are needed and it calls to design more 

advanced classification approaches. Other positive TFRs 

[17] can be tested and compared and detailed study of 

mathematical foundations of ST-Spectrogram still needed.  

Finally, the proposed NSE applied on ST-Spectrogram can 

be considered as a very promising measure to estimate signal 

complexity and to be applied to several feature extraction 

and classification tasks. 
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