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ABSTRACT 
 
This paper introduces a monitoring scheme for discerning 

the boundary of the tooth in dental operations. In this 

scheme, tooth structures and dental fillings were 

discriminated based on their cutting sounds. Support vector 

machines were employed for classification; and averaged 

short time Fourier transform coefficients were selected as 

the features. The results confirmed capability and feasibility 

of the proposed scheme. 

 

Index Terms— Tooth materials monitoring scheme, 

Sound classification, Support vector machine.  

 

1. INTRODUCTION 
 

Tooth is an inhomogeneous structure, which is composed of 

different layered tissues, including enamel, dentin, 

cementum, and pulp. The mechanical characteristics and 

hardness of these layered tissues varies depending on the 

mineral contents. Tooth decay which is the most prevalent 

dental disorders, also alters dental tissue hardness. Dental 

restoration is a process that begins with removing carries 

and affected tissues to retain the functionality of tooth 

structures. Air-turbine dental handpieces (ATDH) are high-
speed rotary cutting tools that are widely used by dentists 

during this operation. The next stage in the process is filling 

the cavity with appropriate restorative materials. 

There are different dental restorative materials that are 

commercially available such as gold, silver amalgam, 

composite polymers, glass ionomers, etc [1]. Among these 

materials, silver amalgam and composites are extensively 

used by dentists. Amalgam is a low cost, easy to handle 

filling material. The use of amalgam fillings has recently 

declined due to adverse health concerns of mercury and this 

has created a shift towards composite polymers. The main 

advantage of composites over amalgam is the aesthetical 
characteristics. Composites can be produced in a variety of 

tooth colors, which can blend and mimic real tooth 

structures. 

Typical dental filling procedure is not just limited to the 

removal of the infected parts of a tooth. In fact, most old 
fillings eventually fail and need to be removed along with 

the new decay. A Common reason of dental filling 

degradation is the external forces of clenching or grinding 

which may result in fatigue, microcracks and ultimate 

failure. The performance of dental restorations is subject to 

several factors, including restorative materials [2-4], type 

and position of a tooth [5, 6], restoration’s shape, size and 

number of restored surfaces [7, 8], as well as the patient’s 

habits and age [2, 8]. Replacing old filling is one of the most 

frequent performed procedures in dental practices [9-11], 

and the rate has not declined despite the advancements in 

dental materials and restoration techniques. 
To conduct restorative operations, dentists receive training 

to become experts of interpretations of their tactile and 

visual senses [12]. They transfer such sensory information 

to the actual practice through their perception. This 

perceptual procedure is highly subjective, and is dependent 

on the individual abilities and experience of dentists [13]. 

The main problem with these approaches is that human 

senses have limited functionality, and sometimes are 

insufficient for dentists to rely on.  

One of the difficulties in replacing failing dental restorations 

is discerning the boundary of the filling materials. Dentists 
may remove healthy tooth structures while replacing tooth-

colored composite materials [13-16]. Although, in the case 

of silver amalgam filling material, the visibility issue is less 

challenging, replacing it also results in healthy tooth 

structure losses [11]. This is of great concerns considering 

that tooth is one of the few human tissues that has very 

limited healing ability and almost all structure losses will be 

irreversible. 

Developing an objective and sensor-based method for dental 

restorative operations is a promising approach to overcome 

the limited functionality of human tactile and visual senses. 

In this approach, restorative materials and tooth structures 
can be accurately distinguished during the cutting and 

removal procedures. To satisfy this monitoring goal, the 

cutting sounds of an ATDH were recorded; and support 

vector machine (SVM) was used for classifying them. SVM 
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is a powerful tool for classification which is explained in 

section 2. Section 3 describes in detail the data collection 

and preprocessing stages. Section 4 presents the results and 

relevant discussions. Section 5 reviews the prior works, and 

finally section 6 concludes with the objectives of this paper. 

 

2. SUPPORT VECTOR MACHINE 
 

Support vector machine (SVM) is a popular method for 

classification and regression, and has been employed in 

various fields of science and engineering [20, 21]. SVM is 

originally a binary classifier. It tries to find a decision 

surface (DS) by maximizing the margin which is defined as 

the minimum distance of any sample in the feature space to 

the DS (Fig. 1): 
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Fig. 1: Support vector machine classifier 

 

The decision surface, depicted in Fig. 1, is assumed to have 

the format of:  

 f�x� � wT��x� 	 b (1) 

 

 where, w and b are the weight vector and the bias term 

(wTdenotes the transpose of w), ��x� is the feature space, 

and �x�, y�� indicates a pair of input-class label (i � 1, … , m,  x� � R�,  y� � �1, �1��).  

The DS described in Eq. 1 can be followed by a threshold 

function (i.e. sign) to assign a class label y� to each input x�. 
As Fig. 1 displays, there are many decision surfaces with 

different margins; however SVM is looking for the one with 

the maximum margin. After several manipulations [21], it 

can be shown that maximizing the margin is equivalent to 

minimizing 1 2� wTw subject to y��wT��x�� 	 b� � 1. In 

the case that y��wT��x�� 	 b� � 1, x� is called a support 
vector. In addition if the data in the feature space are not 

linearly separable, a slack variable � can be introduced, 

which allows the violations of the constraints. Therefore, the 
following optimization problem will arise for SVM: 

 

min�,�, 12 wTw 	 C " ��
�

�#$  
(2) 

subject to          y��wT��x�� 	 b� � 1 � �� �� � 0 

 C is a regularization parameter, and higher values for it 

corresponds to stronger penalties for constraints violations. 

To solve the above problem, Lagrange multipliers (a�) 
should be employed which yields the following dual 
representation [21]: 

 

min/0           L � " a� � 12
�

�#$ " " a�a2y�y2k�x�, x2��
2#$

�
�#$  

subject to         0 4 a� 4 C   and   " a�y�
�

�#$ � 0 

(3) 

 

The solution to Eq. 3 is: 

 

w � " a�y����S
� x�� 

b � 1m� " 7y� � " a2y2k�x�, x2�
�8

2 9�:
�  

(4) 

 

 where mS denotes the set of support vectors; and m� 

indicates the set of data points having 0 < a� < =. Eq. (3) is 

a convex optimization problem and so any local minimum is 

global. In addition, k�x�, x2� is called Kernel function; and in 

case it is a symmetric and positive definite matrix, it equals 

to k>x�, x2? � ��x��T�>x2?. Therefore, SVM is a kernel-

based algorithm; and predictions for new inputs depend on 

the evaluations of w and b (Eq. 4) on the some subsets of 

data points (no need to store all x�). 
 

3. DATA COLLECTION AND PREPROCESSING 
 

In order to collect data, we conducted several tests in a 
dental clinic to have similar condition to the cutting 

procedures performed by dentists. All tests were performed 

in-vitro, and were undertaken on cubic samples (1 @ 1 @1 cm) of amalgam and composite, as well as two intact 

extracted human third molars. The samples were fixed in a 

chuck (clamp). A “W & H Toplight 898le” ATDH and a 

“330 Diamond” bur were used for cutting, which are among 

common choices for dentists during restorative procedures. 

A microphone (GRAS 40be) was attached to the handpiece 

with an adhesive tape (Fig. 2) to record the cutting sounds. 
This arrangement ensured the relative position of the 

handpiece and the microphone is fixed for all the tests. The 

sampling frequency was chosen 48k Hz; high enough to 

capture the maximum speed of the handpiece (~ 4900 rps) 

based on Nyquist–Shannon sampling theorem. A high-speed 

data acquisition card (LDS Dactron Photon II); and a signal 

processing software for FFT analysis (RT Pro Photon) were 
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employed to sample and collect the data on a personal 

computer. 

 

 
Fig. 2: The microphone and air-turbine handpiece 

 

All cuttings were conducted three times in a parallel plane to 

the sample’s surface by an experienced dentist. The cutting 

procedure was comprised of three parts. In the first part 

(NonCon 1), the handpiece ran freely for 2 � 3 s; followed 

by the second part (Con) in which the cutting was 

undertaken for 2 � 3 s. In the last part (NonCon 2), again 

the handpiece ran freely for 1 � 2 s (Fig. 3). 

 

 
Fig. 3: The format of each test 

 

The recorded data were filtered using a high-pass filter at 4k Hz to remove the effect of noises and disturbances (i.e. 

the compressor sound) at lower frequencies. In each test, the 

cutting part (part b in Fig. 3) was identified, and labeled 

appropriately (i.e. tooth, composite, or amalgam).  

Short time Fourier transform (STFT) coefficients were 

selected as the features. Hamming windowing with 50% of 

overlapping was used; and in each window 2100 data points 
were considered (window length ~ 44ms). The first 2048 

Fourier coefficients were selected, and then divided to 64 

equal-sized groups (32 coefficients in each group). The data 

of each group were averaged mathematically to obtain 64 

coefficients as the features.  

Two of the three repeated experiments were used for 

training the SVM, and the third one was employed for 

testing and validation. Table 1 indicates different groups of 

training and testing sets.  

 

TABLE 1 

DIFFERENT GROUPS FOR TRAINING AND TESTING 

Group Name Training Set Testing Set 

G1 1 and 2 3 

G2 1 and 3 2 

G3 2 and 3 1 

4. RESULTS 
 

Two cases of classification were studied in this paper 

considering the fact that in each dental filling only one 

restorative material is used (i.e. composite or amalgam). In 

the Case I, classification was applied to tooth, composite, 
and noncontact classes (TCN). In the Case II, tooth, 

amalgam, and noncontact classes were classified (TAN). It 

should be noted that noncontact was considered as a “class”, 

because the classifier should be able to differentiate it from 

the contact classes (tooth or composite/amalgam).  

SVM is basically designed for binary classifications. 

However, our problem was a 3-class problem. Hsu and Lin 

compared different methods for multiclass SVM, and 

concluded that a “one-against-one” approach was more 

suitable considering practical aspects [22]. In this approach, k�k � 1� 2⁄  binary classifiers were trained (k is the number 
of classes), and the class that received maximum “votes” 

was assigned to a test data. 

Considering the above method, 3 binary classes were trained 

for each case of the problem (TCN or TAN). To apply 

SVM, the software LIBSVM was used [23]. For training, 

the radial basis function (RBF) was selected as the kernel 

[21]: 

 K>x�, x2? � exp ��γIx� � x2IJ� γ K 0 

(5) 

 

C and γ were the “hyper-parameters” of the classifying 

model described by Equations 2, and 5. A “grid search” 
approach was employed; in which the values of these 

parameters were changed exponentially. The hyper-

parameters were varied from 2L$M, 2L$N, … to 2$, 2N; and the 

optimal values were found based on cross validation. In a ν-

fold cross validation, the training data is divided to ν equal-

sized subsets. Then, ν � 1 subsets are used for training, and 

the one remained subset is utilized for testing. The entire 

procedure is performed ν times, and the total classification 

error is obtained [24].  

A 5-fold cross validation was employed in our tests, and 

those values of C and γ were selected that resulted the least 

error (Table 2).  

 

TABLE 2 

THE HYPER-PARAMETER VALUES FROM 5-FOLD CROSS 

VALIDATION 

Classesi PQRii SQR PQT SQT PQU SQU 

T/A 32 0.032 100 0.032 32 0.032 

T/N 2048 2 2048 2 2048 2 

A/N 4096 0.002 512 0.5 256 0.25 

T/C 32 0.032 256 0.25 64 0.062 

C/N 256 0.25 1 1 512 0.5 

i T:Tooth, A:Amalgam, N:Noncontact, C:Composite 
ii G1, G2, and G3 corresponds to data sets specified in Table 1 

696



 

All the values of the Table 2 resulted in 98-100% cross 

validation accuracy, and therefore it was not needed to look 

for other values of C and γ. After employing the hyper-

parameters of Table 2 for training, 3 bi-class classifiers were 
obtained for TCN and TAN cases. A “one-against-one” 

approach was employed for testing, and the results are 

shown in the following Tables: 

 
TABLE 3 

THE CLASSIFICATION ACCURACY OF CASE I (%) 

 Groups ii 

Classes i G1 G2 G3 

T 95 (579) iii 70 (608) 93 (567) 

C 87 (225) 97 (338) 90 (283) 

N 55 (1021) 96 (1047) 87 (1055) 

i Similar to Table 2 
ii Groups are based on Table 1 
iii The accuracy is represented by percentage. The numbers in 
parentheses indicate the total number of test samples for the 

specified class.  

 

TABLE 4 
THE CLASSIFICATION ACCURACY OF CASE II (%) 

 Groups ii 

Classes i G1 G2 G3 

T 100 (579) iii 94 (608) 98 (576) 

A 74 (368) 94 (284) 99 (293) 

N 53 (922) 90 (911) 70 (1003) 

i Similar to Table 2 
ii Groups are based on Table 1 
iii The accuracy is represented by percentage. The numbers in 
parentheses indicate the total number of test samples for the 
specified class.  

 

The classification accuracy for cases I and II are displayed 

in Tables 3 and 4 respectively. The worst accuracy for case I 

was 55% which was obtained in classifying of 1021 test-

samples of noncontact data (G1). The best accuracy for this 

case was for composite (G1) with 97% correct 

classification. For case II, the worst and best accuracy were 

for noncontact (G1) and tooth (G1) in which 53% and 100% 

classification were acquired respectively.  

Considering both cases, the accuracy range was 70%-100% 

for tooth, 87%-97% for composite, 74%-99% for amalgam, 
and 53%-96% for noncontact data.  

 

5. RELATION TO PRIOR WORKS  
 

Thus far, no prior works has been found on discrimination 

of tooth and restorative materials based on the cutting 

sounds. The work presented here was in the area of tooth 

materials monitoring using audio signals. A SVM classifier 

and averaged STFT features were used in our work. Audio 

signals are rich sources of information, and they have been 

utilized in similar problems in other fields. 

Yadav, et al., [17], used audio signals for condition 

monitoring of internal combustion engine. They used FFT 

as the features, and utilized a classifying scheme based on 

the cross- and autocorrelation coefficient values. Quran, et 

al., [18] developed a security monitoring instrument based 

on audio classification. They employed a hierarchical 

structure using a threshold classifier and a time delay neural 

network. Their feature vector consisted of mel-frequency 

cepstral coefficients (MFCC), delta mel-filtered cepstral 

coefficients, and pitch ratio value. In another work, Wan, et 

al., [19] developed an automatic pipeline monitoring system 

using sound information of road cutters. They utilized 

MFCC for the features, and employed a threshold classifier.  

Amft, et al., [25] presented an automatic dietary monitoring 

to predict food weight based on acoustic recognition of 
chewing. In their study, features included log-band spectral 

energy, cepstral coefficients, and linear predictive 

coefficients. They trained a nearest centroid classifier based 

on a Fisher’s linear discriminant feature transformation. In 

another study, Istrate, et al., [26] investigated the detection 

and classification of alarming sounds in a noisy environment 

for medical tele-monitoring. They used discrete wavelet 

transform coefficients as the features, and employed the 

Gaussian mixture model for classification. 

 

6. CONCLUSIONS  
 
In this paper, the cutting sounds of an air-turbine handpiece 

were employed to discriminate between tooth structures and 

amalgam/composite fillings. The features were selected 

from averaged STFT (64 coefficients), and the support 

vector machine was used for classification (one against one 

approach). 

The accuracy range was 70%-100% for tooth, 87%-97% for 

composite, 74%-99% for amalgam, and 53%-96% for 

noncontact data. These results indicated the capability and 

feasibility of the proposed tooth materials monitoring 

scheme based on the cutting sounds. 
 

7. REFERENCES 
 
[1] R. G. Craig, J. M. Powers, “Restorative Dental Materials,” 
Mosby Inc., Eleventh edition, 2002. 
 

[2] I. A. Mjor, A. Jokstad, “Five-Year Study of Class II 
Restorations In Permanent Teeth Using Amalgam, Glass 
Polyalkenoate (Ionomer) Cement and Resin-Based Composite 
Materials”, Journal of Dentistry, vol. 21, pp. 338-343, 1993.  
 
[3] C. J. Collins, R. W. Bryant, K. L. Hodge, “A Clinical 
Evaluation of Posterior Composite Resin Restorations: 8-Year 
Findings”, Journal of Dentistry, vol. 26, pp. 311-317, 1998.  

 
[4] J. A. Soncini, N. N. Maserejian, F. Trachtenberg, M. Tavares, 
C. Hayes, “The Longevity of Amalgam versus 
Compomer/Composite Restorations in Posterior Primary and 

697



Permanent Teeth”, Journal of the American Dental Association, 
vol. No. 18, 138, pp. 763-772, 2007.  
 
[5] G. H. Johnson, D. J. Bales, G. E. Gordon, L. V. Powell, 
“Clinical Performance of Posterior Composite Resin Restorations”, 

Quintessence International, vol. 23, no. 10, pp. 705-711, 1992.  
 
[6] C. W. Drake, “A Comparison of Restoration Longevity in 
Maxillary and Mandibular Teeth”, Journal of the American Dental 
Association, vol. 116, no. 6, pp. 651-654, 1988.  
 
[7] A. Jokstad A, I. A. Mjör, “Replacement Reasons and Service 
Time of Class- II Amalgam Restorations in Relation to Cavity 

Design”, Acta Odontologica Scandinavica, vol. 49, no. 2, pp. 109-
126, 1991.  
 
[8] M. J. Wahl, M. M. Schmitt, D. A. Overton, M. K. Gordon, 
“Prevalence of Cusp Fractures in Teeth Restored with Amalgam 
and with Resin-Based Composite”, Journal of the American Dental 
Association, vol. 135, no. 8, pp. 1127-1132, 2004.  
 

[9] A. O. Adegbembo, P. A. Watson, “Removal, Replacement and 
Placement of Amalgam Restorations by Ontario Dentists in 2002”, 
Journal of the Canadian Dental Association, vol. 71, no. 8, p. 565, 
2005. 
 
[10] J. C. Setcos, R. Khosravi, N. H. Wilson, C. Shen, M. Yang, I. 
A. Mjor, “Repair or Replacement of Amalgam Restorations: 
Decisions at a USA and a UK Dental School”, Operative Dentistry, 
vol. 29, no. 4, pp. 392-397, 2004.  

 
[11] F. Sardenberg, C. C. Bonifácio, M. M. Braga, J. C. P. 
Imparato, F. M. Mendes FM, “Evaluation of the Dental Structure 
Loss Produced During Maintenance and Replacement of Occlusal 
Amalgam Restorations”, Brazilian Journal of Oral Sciences, vol. 
22, no. 3, pp. 242-246, 2008.  
 
[12] J. D. Bader, D. A. Shugars, “What Do We Know About How 

Dentists Make Caries-Related Treatment Decisions?” Community 
Dentistry and Oral Epidemiology, vol. 25, no. 1, pp. 97-103, 1997. 
 
[13] V. V. Gordan, C. W. Garvan, J. S. Richman, J. L. Fellows, D. 
B. Rindal, V. Qvist, M. W. Heft, O. D. Williams, G. H. Gilbert; 
DPBRN Collaborative Group, “How Dentists Diagnose and Treat 
Defective Restorations: Evidence From the Dental Practice-Based 
Research Network,” Operational Dentistry, vol. 34, no. 6, pp. 664-

673, 2010. 
 
[14] V. V. Gordan, “In Vitro Evaluation of Margins of Replaced 
Resin-Based Composite Restorations”, Journal of Esthetic 
Dentistry, vol. 12, no. 4, pp. 209-215, 2000. 
 
[15] V. V. Gordan, “Clinical Evaluation of Replacement of Class 
V Resin Based Composite Restorations,” Journal of Dentistry, vol. 

29, no. 7, pp. 485-488, 2001. 
 
[16] V. V. Gordan, E. Mondragon, C. Shen, “Evaluation of the 
Cavity Design, Cavity Depth, and Shade Matching in the 
Replacement of Resin Based Composite Restorations” 
Quintessence International, vol. 32, no. 3, pp. 273–278, 2002. 
 

[17] S. K. Yadav, K. Tyagi, B. Shah, P. K. Kalra, “Audio 
Signature-Based Condition Monitoring of Internal Combustion 
Engine Using FFT and Correlation Approach”, IEEE Transactions 
on Instrumentation and Measurement, vol. 60, no. 4, pp. 1217-
1226, 2011. 

 
[18] A. R. Abu-El-Quran, R. A. Goubran, “Security Monitoring 
Using Microphone Arrays and Audio Classification”, IEEE 
Transactions on Instrumentation and Measurement, vol. 55, no. 4, 
pp. 1025-1032, 2006. 
 
[19] C. Wan, A. Mita1, T. Kume, “An Automatic Pipeline 
Monitoring System Using Sound Information,” Structural Control 

and Health Monitoring, vol. 17, pp. 83–97, 2010. 
 
[20] C. J. C. Burges, “A Tutorial on Support Vector Machines for 
Pattern Recognition”, Data Mining Knowledge Discovery, vol. 2, 
pp. 121–167, 1998. 
 
[21] C. M. Bishop, “Pattern Recognition and Machine Learning”, 
Springer Science, 2006. 

 
[22] C. W. Hsu, C. J. Lin, "A Comparison of Methods for 
Multiclass Support Vector Machines", IEEE Transactions on 
Neural Networks, vol. 13, no. 2, pp. 415-425, 2002. 
 
[23] C. C. Chang, C. J. Lin, “LIBSVM: A Library for Support 
Vector Machines”, ACM Transactions on Intelligent Systems and 
Technology, vol. 2, no. 3, pp. 27:1--27:27, 2011. 
 

[24] T. Hastie, R. Tibshirani, J. Friedman, “The Elements of 
Statistical Learning”, Springer-Verlag, 2001 
 
[25] O. Amft, M. Kusserow, G. Troster, “Bite Weight Prediction 
From Acoustic Recognition of Chewing”, IEEE Transactions on 
Biomedical Engineering, Vol. 56, No. 6, pp. 1663-1672, 2009. 
 
[26] D. Istrate, E. Castelli, M. Vacher, L. Besacier, J. F. Serignat, 

“Information Extraction From Sound for Medical Telemonitoring”, 
IEEE Transactions on Information Technology in Biomedicine, 
Vol. 10, No. 2, pp. 264-274, 2006. 

698


